Refine
Document Type
- Article (5)
- In Proceedings (1)
Has Fulltext
- no (6)
Is part of the Bibliography
- no (6)
Synaptic vesicle (SV) trafficking toward the plasma membrane (PM) and subsequent SV maturation are essential for neurotransmitter release. These processes, including SV docking and priming, are coordinated by various proteins, such as SNAREs, Munc13, and Synaptotagmin (Syt), which connect—tether—the SV to the PM. Here, we investigated how tethers of varying lengths mediate SV docking using a simplified mathematical model. The heights of the three tether types—estimated from the structures of the SNARE complex, Munc13, and Syt—defined the SV-to-PM distance ranges for tether formation. Geometric considerations linked SV-to-PM distances to the probability and rate of tether formation. We assumed that SV tethering constrains SV motility and that multiple tethers associate by independent interactions. The model predicted that forming multiple tethers favors shorter SV-to-PM distances. Although tethers acted independently in the model, their geometrical properties often caused sequential assembly, from longer ones (Munc13/Syt), that accelerated SV movement towards the PM, to shorter ones (SNAREs) which stabilized PM-proximal SVs. Modifying tether lengths or numbers affected SV trafficking. The independent implementation of tethering proteins enabled their selective removal to mimic gene knockout situations. This showed that simulated SV-to-PM distance distributions qualitatively aligned with published EM studies upon removal of SNARE and Syt tethers, while Munc13 knockout data were best approximated when assuming additional disruption of SNARE tethers. Thus, while salient features of SV docking can be accounted for by independent tethering alone, our results suggest that functional tether interactions not yet featured in our model are crucial for biological function.
At chemical synapses, an arriving electric signal induces the fusion of vesicles with the presynaptic membrane, thereby releasing neurotransmitters into the synaptic cleft. After a fusion event, both the release site and the vesicle undergo a recovery process before becoming available for reuse again. Of central interest is the question which of the two restoration steps acts as the limiting factor during neurotrans-mission under high-frequency sustained stimulation. In order to investigate this question, we introduce a novel non-linear reaction network which involves explicit recovery steps for both the vesicles and the release sites, and includes the induced time-dependent output current. The associated reaction dynamics are formulated by means of ordinary differential equations (ODEs), as well as via the associated stochastic jump process. While the stochastic jump model describes a single release site, the average over many release sites is close to the ODE solution and shares its periodic structure. The reason for this can be traced back to the insight that recovery dynamics of vesicles and release sites are statistically almost independent. A sensitivity analysis on the recovery rates based on the ODE formulation reveals that neither the vesicle nor the release site recovery step can be identified as the essential rate-limiting step but that the rate- limiting feature changes over the course of stimulation. Under sustained stimulation the dynamics given by the ODEs exhibit transient dynamics leading from an initial depression of the postsynaptic response to an asymptotic periodic orbit, while the individual trajectories of the stochastic jump model lack the oscillatory behavior an asymptotic periodicity of the ODE-solution.
We assess the empirical applicability of a simplified model for neurotransmitter release that incorporates maturation, fusion, and recovery of both release sites and vesicles. Model parameters are optimized by fitting the model to experimental data obtained from neuromuscular junction synapses of 3rd-instar Drosophila melanogaster larvae. In particular, the mean-squared error between the local extrema of the simulated total junction current and its experimental counterpart is minimized. We compare three estimation approaches, differing in the choice of optimized parameters and the fusion rate function. Despite the model’s minimalistic structure, it demonstrates a compelling ability to replicate experimental data, yielding plausible parameter estimates for five different animals. An additional identifiability analysis based on the profile likelihood reveals practical non-identifiabilities for several parameters, highlighting the need for additional constraints or data to improve estimation accuracy.