Refine
Document Type
- Article (10)
- In Proceedings (5)
- ZIB-Report (5)
- Research data (3)
- Master's Thesis (1)
- Poster (1)
Is part of the Bibliography
- no (25)
Keywords
- Sparse Geometry Reconstruction (2)
- Statistical Shape Models (2)
- 4D-CT (1)
- Deep Learning (1)
- Gruppenweise Registrierung (1)
- Knee Arthroplasty (1)
- Total Knee Arthoplasty (1)
- cartilage morphometry (1)
- imaging biomarker (1)
- radiomics (1)
Institute
In der Strahlentherapie von Lungentumoren kann mittels Dosisakkumulation der Einfluss von Atembewegungen auf statisch geplante Dosisverteilungen abgeschätzt werden. Grundlage sind 4D-CT-Daten des Patienten, aus denen mittels nicht-linearer Bildregistrierung eine Sequenz von Bewegungsfeldern berechnet wird. Typischerweise werden Methoden der paarweisen Bildregistrierung eingesetzt, d.h. konsekutiv zwei Atemphasen aufeinander registriert. Hierbei erfolgt i.d.R. eine physiologisch nicht plausible Anpassung der Felder an CT-Bewegungsartefakte. Gruppenweise Registrierungsansätze berücksichtigen hingegen gleichzeitig sämtliche Bilddaten des 4D-CT-Scans und ermöglichen die Integration von zeitlichen Konsistenzbetrachtungen. In diesem Beitrag wird der potentielle Vorteil der gruppen- im Vergleich zur paarweisen Registrierung in artefaktbehafteten 4D-CT-Daten untersucht.
Precise voxel trajectory estimation in 4D CT images is a prerequisite for reliable dose accumulation during 4D treatment planning. 4D CT image data is, however, often affected by motion artifacts and applying standard pairwise registration to such data sets bears the risk of aligning anatomical structures to artifacts – with physiologically unrealistic trajectories being the consequence. In this work, the potential of a novel non-linear hybrid intensity- and feature-based groupwise registration method for robust motion field estimation in artifact-affected 4D CT image data is investigated. The overall registration performance is evaluated on the DIR-lab datasets; Its robustness if applied to artifact-affected data sets is analyzed using clinically acquired data sets with and without artifacts. The proposed registration approach achieves an accuracy comparable to the state-of-the-art (subvoxel accuracy), but smoother voxel trajectories compared to pairwise registration. Even more important: it maintained accuracy and trajectory smoothness in the presence of image artifacts – in contrast to standard pairwise registration, which yields higher landmark-based registration errors and a loss of trajectory smoothness when applied to artifact-affected data sets.
Vertebral labelling and segmentation are two fundamental tasks in an automated spine processing pipeline. Reliable and accurate processing of spine images is expected to benefit clinical decision support systems for diagnosis, surgery planning, and population-based analysis of spine and bone health. However, designing automated algorithms for spine processing is challenging predominantly due to considerable variations in anatomy and acquisition protocols and due to a severe shortage of publicly available data. Addressing these limitations, the Large Scale Vertebrae Segmentation Challenge (VerSe) was organised in conjunction with the International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) in 2019 and 2020, with a call for algorithms tackling the labelling and segmentation of vertebrae. Two datasets containing a total of 374 multi-detector CT scans from 355 patients were prepared and 4505 vertebrae have individually been annotated at voxel level by a human-machine hybrid algorithm (https://osf.io/nqjyw/, https://osf.io/t98fz/). A total of 25 algorithms were benchmarked on these datasets. In this work, we present the results of this evaluation and further investigate the performance variation at the vertebra level, scan level, and different fields of view. We also evaluate the generalisability of the approaches to an implicit domain shift in data by evaluating the top-performing algorithms of one challenge iteration on data from the other iteration. The principal takeaway from VerSe: the performance of an algorithm in labelling and segmenting a spine scan hinges on its ability to correctly identify vertebrae in cases of rare anatomical variations. The VerSe content and code can be accessed at: https://github.com/anjany/verse.
In this study we investigate methods for fitting a Statistical Shape Model (SSM) to intraoperatively acquired point cloud data from a surgical navigation system. We validate the fitted models against the pre-operatively acquired Magnetic Resonance Imaging (MRI) data from the same patients.
We consider a cohort of 10 patients who underwent navigated total knee arthroplasty. As part of the surgical protocol the patients’ distal femurs were partially digitized. All patients had an MRI scan two months pre-operatively. The MRI data were manually segmented and the reconstructed bone surfaces used as ground truth against which the fit was compared. Two methods were used to fit the SSM to the data, based on (1) Iterative Closest Points (ICP) and (2) Gaussian Mixture Models (GMM).
For both approaches, the difference between model fit and ground truth surface averaged less than 1.7 mm and excellent correspondence with the distal femoral morphology can be demonstrated.
The reconstruction of an object's shape or surface from a set of 3D points is a common topic in materials and life sciences, computationally handled in computer graphics. Such points usually stem from optical or tactile 3D coordinate measuring equipment. Surface reconstruction also appears in medical image analysis, e.g. in anatomy reconstruction from tomographic measurements or the alignment of intra-operative navigation and preoperative planning data. In contrast to mere 3D point clouds, medical imaging yields contextual information on the 3D point data that can be used to adopt prior information on the shape that is to be reconstructed from the measurements. In this work we propose to use a statistical shape model (SSM) as a prior for surface reconstruction. The prior knowledge is represented by a point distribution model (PDM) that is associated with a surface mesh. Using the shape distribution that is modelled by the PDM, we reformulate the problem of surface reconstruction from a probabilistic perspective based on a Gaussian Mixture Model (GMM). In order to do so, the given measurements are interpreted as samples of the GMM. By using mixture components with anisotropic covariances that are oriented according to the surface normals at the PDM points, a surface-based tting is accomplished. By estimating the parameters of the GMM in a maximum a posteriori manner, the reconstruction of the surface from the given measurements is achieved. Extensive experiments suggest that our proposed approach leads to superior surface reconstructions compared to Iterative Closest Point (ICP) methods.
Purpose: Despite the success of total knee arthroplasty there continues to be a significant proportion of patients who are dissatisfied. One explanation may be a shape mismatch between pre and post-operative distal femurs. The purpose of this study was to investigate a method to match a statistical shape model (SSM) to intra-operatively acquired point cloud data from a surgical navigation system, and to validate it against the pre-operative magnetic resonance imaging (MRI) data from the same patients.
Methods: A total of 10 patients who underwent navigated total knee arthroplasty also had an MRI scan less than 2 months pre-operatively. The standard surgical protocol was followed which included partial digitization of the distal femur. Two different methods were employed to fit the SSM to the digitized point cloud data, based on (1) Iterative Closest Points (ICP) and (2) Gaussian Mixture Models (GMM). The available MRI data were manually segmented and the reconstructed three-dimensional surfaces used as ground truth against which the statistical shape model fit was compared.
Results: For both approaches, the difference between the statistical shape model-generated femur and the surface generated from MRI segmentation averaged less than 1.7 mm, with maximum errors occurring in less clinically important areas.
Conclusion: The results demonstrated good correspondence with the distal femoral morphology even in cases of sparse data sets. Application of this technique will allow for measurement of mismatch between pre and post-operative femurs retrospectively on any case done using the surgical navigation system and could be integrated into the surgical navigation unit to provide real-time feedback.
In this study we investigate methods for fitting a Statistical Shape Model (SSM) to intraoperatively acquired point cloud data from a surgical navigation system. We validate the fitted models against the pre-operatively acquired Magnetic Resonance Imaging (MRI) data from the same patients.
We consider a cohort of 10 patients who underwent navigated total knee arthroplasty. As part of the surgical protocol the patients’ distal femurs were partially digitized. All patients had an MRI scan two months pre-operatively. The MRI data were manually segmented and the reconstructed bone surfaces used as ground truth against which the fit was compared. Two methods were used to fit the SSM to the data, based on (1) Iterative Closest Points (ICP) and (2) Gaussian Mixture Models (GMM).
For both approaches, the difference between model fit and ground truth surface averaged less than 1.7 mm and excellent correspondence with the distal femoral morphology can be demonstrated.
The reconstruction of an object’s shape or surface from a set of 3D points plays an important role in medical image analysis, e.g. in anatomy reconstruction from tomographic measurements or in the process of aligning intra-operative navigation and preoperative planning data. In such scenarios, one usually has to deal with sparse data, which significantly aggravates the problem of reconstruction. However, medical applications often provide contextual information about the 3D point data that allow to incorporate prior knowledge about the shape that is to be reconstructed. To this end, we propose the use of a statistical shape model (SSM) as a prior for surface reconstruction. The SSM is represented by a point distribution model (PDM), which is associated with a surface mesh. Using the shape distribution that is modelled by the PDM, we formulate the problem of surface reconstruction from a probabilistic perspective based on a Gaussian Mixture Model (GMM). In order to do so, the given points are interpreted as samples of the GMM. By using mixture components with anisotropic covariances that are “oriented” according to the surface normals at the PDM points, a surface-based fitting is accomplished. Estimating the parameters of the GMM in a maximum a posteriori manner yields the reconstruction of the surface from the given data points. We compare our method to the extensively used Iterative Closest Points method on several different anatomical datasets/SSMs (brain, femur, tibia, hip, liver) and demonstrate superior accuracy and robustness on sparse data.
Gruppenweise Registrierung zur robusten Bewegungsfeldschätzung in artefaktbehafteten 4D-CT-Bilddaten
(2015)
Das Ziel der Strahlentherapie ist, eine möglichst hohe Dosis in den Tumor zu applizieren und zeitgleich die Strahlenexposition des Normalgewebes zu minimieren. Insbesondere bei thorakalen und abdominalen Tumoren treten aufgrund der Atmung während der Bestrahlung große, komplexe und patientenspezifisch unterschiedliche Bewegungen der Gewebe auf. Um den Einfluss dieser Bewegung auf die i.d.R. statisch geplante Dosisverteilung abzuschätzen, können unter Verwendung der nicht-linearen Bildregistrierung anhand von 3D-CT-Aufnahmen eines Atmungszyklus - also 4D-CT-Daten - zunächst die Bewegungsfelder für die strahlentherapeutisch relevanten Strukturen, beispielsweise für die Lunge, berechnet werden. Diese Informationen bilden die Grundlage für sogenannte 4D-Dosisberechnungs- oder Dosisakkumulationsverfahren. Deren Genauigkeit hängt aber wesentlich von der Genauigkeit der Bewegungsfeldschätzung ab.
Klassisch erfolgt die Berechnung der Bewegungsfelder mittels paarweiser Bildregistrierung, womit für die Berechnung des Bewegungsfeldes zwischen zwei Bildern im Allgemeinen eine sehr hohe Genauigkeit erreicht wird. Auch für CT-Bilder, die Bewegungsartefakte, wie beispielsweise doppelte oder unvollständige Strukturen, enthalten, wird unter Verwendung der paarweisen Bildregistrierung im Kontext der Registrierung eine exakte Abbildung der anatomischen Strukturen zwischen den beiden Bildern erreicht. Dabei erfolgt aber eine physiologisch unplausible Anpassung der Felder an die Artefakte. Bei Verwendung der paarweisen Bildregistrierung müssen weiterhin für einen Atemzyklus die Voxel-Trajektorien aus Bewegungsfeldern zwischen mehreren dreidimensionalen Bildern zusammengesetzt werden. Durch Bewegungsartefakte entsprechen diese Trajektorien dann teilweise keiner natürlichen Bewegung der anatomischen Strukturen. Diese Ungenauigkeit stellt in der klinischen Anwendung ein Problem dar; dies gilt umso mehr, wenn Bewegungsartefakte im Bereich eines Tumors vorliegen.
Im Gegensatz zu der paarweisen Registrierung kann mit der gruppenweisen Registrierung das Problem der durch Bewegungsartefakte hervorgerufenen ungenauen Abbildung der physiologischen Gegebenheiten dadurch reduziert werden, dass im Registrierungsprozess Bildinformationen aller Bilder, also in diesem Kontext der CT-Daten zu unterschiedlichen Atemphasen, gleichzeitig genutzt werden. Es kann bereits im Registrierungsprozess eine zeitliche Glattheit der Voxel-Trajektorien gefordert werden.
In dieser Arbeit wird eine Methode zur B-Spline-basierten zeitlich regularisierten gruppenweisen Registrierung entwickelt. Die Genauigkeit der entwickelten Methode wird für frei zugängliche klinische Datensätze landmarkenbasiert evaluiert. Dabei wird mit dem Target Registration Error (TRE) die durchschnittliche dreidimensionale euklidische Distanz zwischen den korrespondierenden Landmarken nach Transformation der Landmarken bezeichnet. Eine Genauigkeit in der Größenordnung von aktuellen paarweisen Registrierungen verdeutlicht die Qualität des vorgestellten Registrierungs-Algorithmus. Anschließend werden die Vorteile der gruppenweisen Registrierung durch Experimente an einem Lungenphantom und an manipulierten, artefaktbehafteten klinischen 4D-CT-Bilddaten demonstriert. Dabei werden unter Verwendung der gruppenweisen Registrierung im Vergleich zu der paarweisen Registrierung glattere Trajektorien berechnet, die der realen Bewegung der anatomischen Strukturen stärker entsprechen. Für die Patientendaten wird außerdem anhand von automatisch detektierten Landmarken der TRE ausgewertet. Der TRE verschlechterte sich für die paarweise Bildregistrierung unter Vorliegen von Bewegungsartefakten von durchschnittlich 1,30 mm auf 3,94 mm. Auch hier zeigte sich für die gruppenweise Registrierung die Robustheit gegenüber Bewegungsartefakten und der TRE verschlechterte sich nur geringfügig von 1,45 mm auf 1,71 mm.