Refine
Document Type
- Article (6)
- In Proceedings (5)
- ZIB-Report (4)
- Poster (2)
- Doctoral Thesis (1)
- Other (1)
Language
- English (19)
Is part of the Bibliography
- no (19)
Keywords
- Flow Visualization, Time-dependent Vector Fields (1)
- Lagrangian Coherent Structures (LCS) (1)
- Picture/Image Generation, Display algorithms, Three-Dimensional Graphics and Realism, Raytracing (1)
- finite-time Lyapunov exponents (FTLE) (1)
- flow field visualization (1)
- multi-modal, intergrated data analysis, topology (1)
- time lines (1)
- time-dependent vector fields (1)
Institute
The analysis of data that captures volcanic eruptions and their atmospheric aftermath plays an important role for domain experts to gain a deeper understanding of the volcanic eruption and their consequences for atmosphere, climate and air traffic. Thereby, one major challenge is to extract and combine the essential information, which is spread over various, mostly sparse data sources. This requires a careful integration of each data set with its strength and limitations. The sparse, but more reliable measurement data is mainly used to calibrate the more dense simulation data. This work combines a collection of visualization approaches into an exploitative framework. The goal is to support the domain experts to build a complete picture of the situation. But it is also important to understand the individual data sources, the wealth of their information and the quality of the simulation results. All presented methods are designed for direct interaction with the data from different perspectives rather than the sole generation of some final images.
To improve existing weather prediction and reanalysis capabilities, high-resolution and multi-modal climate data becomes an increasingly important topic. The advent of increasingly dense numerical simulation of atmospheric phenomena, provides new means to better understand dynamic processes and to visualize structural flow patterns that remain hidden otherwise. In the presented illustrations we demonstrate an advanced technique to visualize multiple scales of dense flow fields and Lagrangian patterns therein, simulated by state-of-the-art simulation models for each scale. They provide a deeper insight into the structural differences and patterns that occur on each scale and highlight the complexity of flow phenomena in our atmosphere.
Recent advances in high-resolution, cloud resolving simulation models pose several challenges towards respective analysis methodologies. To enable efficient comparison and validation of such models efficient, scalable, and informative diagnostic procedures are mandatory. In this talk, an object-based evaluation scheme based on the notion of scalar field topology will be presented. The presentation will cover the application of topological clustering procedures for object identification, tracking, and the retrieval of object-based statistics. The pro-posed methodology is shown to enable an advanced in-depth evaluation and visualization of high cloud-resolving models. Using a newly developed large-scale high-resolution model (i.e., HD(CP)2 ICON), it will be demonstrated that the presented procedures are applicable to assess the model performance compared to measurements (e.g., radar, satellite) and standard operational models (COSMO) at different domains and spatial scales.
In atmospheric sciences, sizes of data sets grow continuously due to increasing resolutions. A central task is the comparison of spatiotemporal fields, to assess different simulations and to compare simulations with observations. A significant information reduction is possible by focusing on geometric-topological features of the fields or on derived meteorological objects. Due to the huge size of the data sets, spatial features have to be extracted in time slices and traced over time. Fields with chaotic component, i.e. without 1:1 spatiotemporal correspondences, can be compared by looking upon statistics of feature properties. Feature extraction, however, requires a clear mathematical definition of the features - which many meteorological objects still lack. Traditionally, object extractions are often heuristic, defined only by implemented algorithms, and thus are not comparable. This work surveys our framework designed for efficient development of feature tracking methods and for testing new feature definitions. The framework supports well-established visualization practices and is being used by atmospheric researchers to diagnose and compare data.
To improve existing weather prediction and reanalysis capabilities, high-resolution and multi-modal climate data becomes an increasingly important topic. The advent of increasingly dense numerical simulation of atmospheric phenomena, provides new means to better understand dynamic processes and to visualize structural flow patterns that remain hidden otherwise. In the presented illustrations we demonstrate an advanced technique to visualize multiple scales of dense flow fields and Lagrangian patterns therein, simulated by state-of-the-art simulation models for each scale. They provide a deeper insight into the structural differences and patterns that occur on each scale and highlight the complexity of flow phenomena in our atmosphere.
This paper is associated with a poster winner of a 2016 APS/DFD Milton van Dyke Award for work presented at the DFD Gallery of Fluid Motion. The original poster is available from the Gallery of Fluid Motion, https://doi.org/10.1103/APS.DFD.2016.GFM.P0030
Large-eddy simulations (LES) with the new ICOsahedral Non-hydrostatic atmosphere model (ICON) covering Germany are evaluated for four days in spring 2013 using observational data from various sources. Reference simulations with the established Consortium for Small-scale Modelling (COSMO) numerical weather prediction model and further standard LES codes are performed and used as a reference. This comprehensive evaluation approach covers multiple parameters and scales, focusing on boundary-layer variables, clouds and precipitation. The evaluation points to the need to work on parametrizations influencing the surface energy balance, and possibly on ice cloud microphysics. The central purpose for the development and application of ICON in the LES configuration is the use of simulation results to improve the understanding of moist processes, as well as their parametrization in climate models. The evaluation thus aims at building confidence in the model's ability to simulate small- to mesoscale variability in turbulence, clouds and precipitation. The results are encouraging: the high-resolution model matches the observed variability much better at small- to mesoscales than the coarser resolved reference model. In its highest grid resolution, the simulated turbulence profiles are realistic and column water vapour matches the observed temporal variability at short time-scales. Despite being somewhat too large and too frequent, small cumulus clouds are well represented in comparison with satellite data, as is the shape of the cloud size spectrum. Variability of cloud water matches the satellite observations much better in ICON than in the reference model. In this sense, it is concluded that the model is fit for the purpose of using its output for parametrization development, despite the potential to improve further some important aspects of processes that are also parametrized in the high-resolution model.