### Refine

#### Document Type

- Article (6)

#### Language

- English (6)

#### Has Fulltext

- no (6)

#### Is part of the Bibliography

- no (6)

We introduce a variational structure for the Fourier-Cattaneo (FC) system which is a second-order hyperbolic system. This variational structure is inspired by the large-deviation rate functional for the Kac process which is closely linked to the FC system. Using this variational formulation we introduce appropriate solution concepts for the FC equation and prove an a priori estimate which connects this variational structure to an appropriate Lyapunov function and Fisher information, the so-called FIR inequality. Finally, we use this formulation and estimate to study the diffusive and hyperbolic limits for the FC system.

For a given thermodynamic system, and a given choice of coarse-grained state variables, the knowledge of a force-flux constitutive law is the basis for any nonequilibrium modeling. In the first paper of this series we established how, by a generalization of the classical fluctuation-dissipation theorem (FDT), the structure of a constitutive law is directly related to the distribution of the fluctuations of the state variables. When these fluctuations can be expressed in terms of diffusion processes, one may use Green–Kubo-type coarse-graining schemes to find the constitutive laws. In this paper we propose a coarse-graining method that is valid when the fluctuations are described by means of general Markov processes, which include diffusions as a special case. We prove the success of the method by numerically computing the constitutive law for a simple chemical reaction A⇄B. Furthermore, we show that, for such a system, one cannot find a consistent constitutive law by any Green–Kubo-like scheme.

Exploring families of energy-dissipation landscapes via tilting: three types of EDP convergence
(2021)

This paper revolves around a subtle distinction between two concepts: passing to the limit in a family of gradient systems, on one hand, and deriving effective kinetic relations on the other. The two concepts are strongly related, and in many examples they even appear to be the same. Our main contributions are to show that they are different, to show that well-known techniques developed for the former may give incorrect results for the latter, and to introduce new tools to remedy this. The approach is based on the Energy-Dissipation Principle that provides a variational formulation to gradient-flow equations that allows one to apply techniques from Γ-convergence of functional on states and functionals on trajectories.

Understanding the fluctuations by which phenomenological evolution equations with thermodynamic structure can be enhanced is the key to a general framework of nonequilibrium statistical mechanics. These fluctuations provide an idealized representation of microscopic details. We consider fluctuation-enhanced equations associated with Markov processes and elaborate the general recipes for evaluating dynamic material properties, which characterize force-flux constitutive laws, by statistical mechanics. Markov processes with continuous trajectories are conveniently characterized by stochastic differential equations and lead to Green–Kubo-type formulas for dynamic material properties. Markov processes with discontinuous jumps include transitions over energy barriers with the rates calculated by Kramers. We describe a unified approach to Markovian fluctuations and demonstrate how the appropriate type of fluctuations (continuous versus discontinuous) is reflected in the mathematical structure of the phenomenological equations.

A route to the hydrodynamic limit of a reaction-diffusion master equation using gradient structures
(2023)

The reaction-diffusion master equation (RDME) is a lattice-based stochastic model for spatially resolved cellular processes. It is often interpreted as an approximation to spatially continuous reaction-diffusion models, which, in the limit of an infinitely large population, may be described by means of reaction-diffusion partial differential equations. Analyzing and understanding the relation between different mathematical models for reaction-diffusion dynamics is a research topic of steady interest. In this work, we explore a route to the hydrodynamic limit of the RDME which uses gradient structures. Specifically, we elaborate on a method introduced in [J. Maas and A. Mielke, J. Stat. Phys., 181 (2020), pp. 2257–2303] in the context of well-mixed reaction networks by showing that, once it is complemented with an appropriate limit procedure, it can be applied to spatially extended systems with diffusion. Under the assumption of detailed balance, we write down a gradient structure for the RDME and use the method in order to produce a gradient structure for its hydrodynamic limit, namely, for the corresponding RDPDE.

This article addresses reaction networks in which spatial and stochastic effects are of crucial importance. For such systems, particle-based models allow us to describe all microscopic details with high accuracy. However, they suffer from computational inefficiency if particle numbers and density get too large. Alternative coarse-grained-resolution models reduce computational effort tremendously, e.g., by replacing the particle distribution by a continuous concentration field governed by reaction-diffusion PDEs. We demonstrate how models on the different resolution levels can be combined into hybrid models that seamlessly combine the best of both worlds, describing molecular species with large copy numbers by macroscopic equations with spatial resolution while keeping the stochastic-spatial particle-based resolution level for the species with low copy numbers. To this end, we introduce a simple particle-based model for the binding dynamics of ions and vesicles at the heart of the neurotransmission process. Within this framework, we derive a novel hybrid model and present results from numerical experiments which demonstrate that the hybrid model allows for an accurate approximation of the full particle-based model in realistic scenarios.