Refine
Year of publication
Document Type
- Article (88)
- ZIB-Report (39)
- In Proceedings (5)
- Book chapter (4)
- Other (3)
- Doctoral Thesis (2)
- In Collection (2)
- Research data (2)
- Habilitation (1)
- Poster (1)
Is part of the Bibliography
- no (147)
Keywords
- Markov State Models (5)
- metastability (5)
- cluster analysis (4)
- molecular dynamics (4)
- rare events (4)
- Conformation Dynamics (3)
- MSM (3)
- Perron cluster analysis (3)
- Schur decomposition (3)
- dynamical systems (3)
Institute
- Numerical Mathematics (131)
- Computational Molecular Design (112)
- ZIB Allgemein (15)
- Computational Systems Biology (12)
- Modeling and Simulation of Complex Processes (10)
- Mathematics for Life and Materials Science (3)
- Mathematical Optimization (2)
- Mathematical Optimization Methods (2)
- Visual Data Analysis (1)
- Visual Data Analysis in Science and Engineering (1)
This paper introduces a new algorithm of conformational analysis based on mesh-free methods as described in [M. Weber. Mehless methods in Conformation Dynamics.(2005)]. The adaptive decomposition of the conformational space by softly limiting functions avoids trapping effects and allows adaptive refinement strategies. These properties of the algorithm makes ZIBgridfree particularly suitable for the complete exploration of high-dimensional conformational space. The adaptive control of the algorithm benefits from the tight integration of molecular simulation and conformational analysis. An emphasized part of the analysis is the Robust Perron Cluster Analysis (PCCA+) based on the work of Peter Deuflhard and Marcus Weber. PCCA+ supports an almost-characteristic cluster definition with an outstanding mapping of transition states. The outcome is expressed by the metastable sets of conformations, their thermodynamic weights and flexibility.
Decomposition of the high dimensional conformational space of bio-molecules into metastable subsets is used for data reduction of long molecular trajectories in order to facilitate chemical analysis and to improve convergence of simulations within these subsets. The metastability is identified by the Perron-cluster cluster analysis of a Markov process that generates the thermodynamic distribution. A necessary prerequisite of this analysis is the discretization of the conformational space. A combinatorial approach via discretization of each degree of freedom will end in the so called ''curse of dimension''. In the following paper we analyze Hybrid Monte Carlo simulations of small, drug-like biomolecules and focus on the dihedral degrees of freedom as indicators of conformational changes. To avoid the ''curse of dimension'', the projection of the underlying Markov operator on each dihedral is analyzed according to its metastability. In each decomposition step of a recursive procedure, those significant dihedrals, which indicate high metastability, are used for further decomposition. The procedure is introduced as part of a hierarchical protocol of simulations at different temperatures. The convergence of simulations within metastable subsets is used as an ''a posteriori'' criterion for a successful identification of metastability. All results are presented with the visualization program AmiraMol.
The problem of clustering data can often be transformed into the problem of finding a hidden block diagonal structure in a stochastic matrix. Deuflhard et al. have proposed an algorithm that state s the number $k$ of clusters and uses the sign structure of $k$ eigenvectors of the stochastic matrix to solve the cluster problem. Recently Weber and Galliat discovered that this system of eigenvectors can easily be transformed into a system of $k$ membership functions or soft characteristic functions describing the clusters. In this article we explain the corresponding cluster algorithm and point out the underlying theory. By means of numerical examples we explain how the grade of membership can be interpreted.
The key to molecular conformation dynamics is the direct identification of metastable conformations, which are almost invariant sets of molecular dynamical systems. Once some reversible Markov operator has been discretized, a generalized symmetric stochastic matrix arises. This matrix can be treated by Perron cluster analysis, a rather recent method involving a Perron cluster eigenproblem. The paper presents an improved Perron cluster analysis algorithm, which is more robust than earlier suggestions. Numerical examples are included.
In this paper we interpret clustering as a mapping of data into a simplex. If the data itself has simplicial struture this mapping becomes linear. Spectral analysis is an often used tool for clustering data. We will show that corresponding singular vectors or eigenvectors comprise simplicial structure. Therefore they lead to a cluster algorithm, which consists of a simple linear mapping. An example for this kind of algorithms is the Perron cluster analysis (PCCA). We have applied it in practice to identify metastable sets of molecular dynamical systems. In contrast to other algorithms, this kind of approach provides an a priori criterion to determine the number of clusters. In this paper we extend the ideas to more general problems like clustering of bipartite graphs.
The complexity of molecular kinetics can be reduced significantly by a restriction to metastable conformations which are almost invariant sets of molecular dynamical systems. With the Robust Perron Cl uster Analysis PCCA+, developed by Weber and Deuflhard, we have a tool available which can be used to identify these conformations from a transition probability matrix. This method can also be applied to the corresponding transition rate matrix which provides important information concerning transition pathways of single molecules. In the present paper, we explain the relationship between these tw o concepts and the extraction of conformation kinetics from transition rates. Moreover, we show how transition rates can be approximated and conclude with numerical examples.
Recently, a novel approach for the analysis of molecular dynamics on the basis of a transfer operator has been introduced. Therein conformations are considered to be disjoint metastable clusters within position space of a molecule. These clusters are defined by almost invariant characteristic functions that can be computed via {\em Perron Cluster} analysis. The present paper suggests to replace crisp clusters with {\em fuzzy} clusters, i.e. to replace characteristic functions with membership functions. This allows a more sufficient characterization of transiton states between different confor conformations and therefore leads to a better understanding of molecular dynamics. Fur thermore, an indicator for the uniqueness of metastable fuzzy clusters and a fast algorithm for the computation of these clusters are described. Numerical examples are included.
For the treatment of equilibrated molecular systems in a heat bath we propose a transition state theory that is based on conformation dynamics. In general, a set-based discretization of a Markov operator ${\cal P}^\tau$ does not preserve the Markov property. In this article, we propose a discretization method which is based on a Galerkin approach. This discretization method preserves the Markov property of the operator and can be interpreted as a decomposition of the state space into (fuzzy) sets. The conformation-based transition state theory presented here can be seen as a first step in conformation dynamics towards the computation of essential dynamical properties of molecular systems without time-consuming molecular dynamics simulations.
Biochemical interactions are determined by the 3D-structure of the involved components - thus the identification of conformations is a key for many applications in rational drug design. {\sf ConFlow} is a new multilevel approach to conformational analysis with main focus on completeness in investigation of conformational space. In contrast to known conformational analysis, the starting point for design is a space-based description of conformational areas. A tight integration of sampling and analysis leads to an identification of conformational areas simultaneously during sampling. An incremental decomposition of high-dimensional conformational space is used to guide the analysis. A new concept for the description of conformations and their path connected components based on convex hulls and {\em Hypercubes}is developed. The first results of the {\sf ConFlow} application constitute a 'proof of concept' and are further more highly encouraging. In comparison to conventional industrial applications, {\sf ConFlow} achieves higher accuracy and a specified degree of completeness with comparable effort.
The dynamic behavior of molecules can often be described by Markov processes. From computational molecular simulations one can derive transition rates or transition probabilities between subsets of the discretized conformational space. On the basis of this dynamic information, the spatial subsets are combined into a small number of so-called metastable molecular conformations. This is done by clustering methods like the Robust Perron Cluster Analysis (PCCA+). Up to now it is an open question how this coarse graining in space can be transformed to a coarse graining of the Markov chain while preserving the essential dynamic information. In the following article we aim at a consistent coarse graining of transition probabilities or rates on the basis of metastable conformations such that important physical and mathematical relations are preserved. This approach is new because PCCA+ computes molecular conformations as linear combinations of the dominant eigenvectors of the transition matrix which does not hold for other clustering methods.