### Refine

#### Document Type

- ZIB-Report (2)
- Article (1)

#### Language

- English (3)

#### Is part of the Bibliography

- no (3)

#### Keywords

#### Institute

Whenever the invariant stationary density of metastable dynamical systems decomposes into almost invariant partial densities, its computation as eigenvector of some transition probability matrix is an ill-conditioned problem. In order to avoid this computational difficulty, we suggest to apply an aggregation/disaggregation method which only addresses wellconditioned sub-problems and thus results in a stable algorithm. In contrast to existing methods, the aggregation step is done via a sampling algorithm which covers only small patches of the sampling space. Finally, the theoretical analysis is illustrated by two biomolecular examples.

In order to compute the thermodynamic weights of the different metastable conformations of a molecule, we want to approximate the molecule's Boltzmann distribution in a reasonable time. This is an essential issue in computational drug design. The energy landscape of active biomolecules is generally very rough with a lot of high barriers and low regions. Many of the algorithms that perform such samplings (e.g. the hybrid Monte Carlo method) have difficulties with such landscapes. They are trapped in low-energy regions for a very long time and cannot overcome high barriers. Moving from one low-energy region to another is a very rare event. For these reasons, the distribution of the generated sampling points converges very slowly against the thermodynamically correct distribution of the molecule. The idea of ConfJump is to use $a~priori$ knowledge of the localization of low-energy regions to enhance the sampling with artificial jumps between these low-energy regions. The artificial jumps are combined with the hybrid Monte Carlo method. This allows the computation of some dynamical properties of the molecule. In ConfJump, the detailed balance condition is satisfied and the mathematically correct molecular distribution is sampled.