### Refine

#### Year of publication

#### Document Type

- ZIB-Report (51)
- In Proceedings (36)
- Article (19)
- Book chapter (2)
- Book (1)
- Doctoral Thesis (1)
- Master's Thesis (1)

#### Keywords

- column generation (4)
- integer programming (4)
- network aggregation (4)
- rapid branching (4)
- railway track allocation (3)
- Column Generation (2)
- Fahrplanung (2)
- Netzwerkaggregation (2)
- Optimization (2)
- Railway Slot Allocation (2)

#### Institute

The airline crew scheduling problem deals with the construction of crew rotations in order to cover the flights of a given schedule at minimum cost. The problem involves complex rules for the legality and costs of individual pairings and base constraints for the availability of crews at home bases. A typical instance considers a planning horizon of one month and several thousand flights. We propose a column generation approach for solving airline crew scheduling problems that is based on a set partitioning model. We discuss algorithmic aspects such as the use of bundle techniques for the fast, approximate solution of linear programs, a pairing generator that combines Lagrangean shortest path and callback techniques, and a novel rapid branching'' IP heuristic. Computational results for a number of industrial instances are reported. Our approach has been implemented within the commercial crew scheduling system NetLine/Crew of Lufthansa Systems Berlin GmbH.

Today the railway timetabling process and the track allocation
is one of the most challenging problems to solve by a railway company.
Especially due to the deregulation of the transport market in the recent years several
suppliers of railway traffic have entered the market in Europe. This leads to more
potential conflicts between trains caused by an increasing demand of train paths.
Planning and operating railway transportation systems is extremely hard due
to the combinatorial complexity of the underlying discrete optimization problems,
the technical intricacies, and the immense size of the problem instances.
In order to make best use of the infrastructure and to ensure economic operation,
efficient planning of the railway operation is indispensable.
Mathematical optimization models and algorithms can help
to automatize and tackle these challenges.
Our contribution in this paper is to present a renewed planning process
due to the liberalization in Europe and an associated concept for track allocation, that consists
of three important parts, simulation, aggregation, and optimization.
Furthermore, we present results of our general framework for real world data.

Bus rapid transit systems in developing and newly industrialized countries are often operated at the limits of passenger capacity. In particular, demand during morning and afternoon peaks is hardly or even not covered with available line plans. In order to develop demand-driven line plans, we use two mathematical models in the form of integer programming problem formulations. While the actual demand data is specified with origin-destination pairs, the arc-based model considers the demand over the arcs derived from the origin-destination demand. In order to test the accuracy of the models in terms of demand satisfaction, we simulate the optimal solutions and compare number of transfers and travel times. We also question the effect of a selfish route choice behavior which in theory results in a Braess-like paradox by increasing the number of transfers when system capacity is increased with additional lines.

We propose a new coarse-to-fine approach to solve certain linear programs by column generation. The problems that we address contain layers corresponding to different levels of detail, i.e., coarse layers as well as fine layers. These layers are utilized to design
efficient pricing rules. In a nutshell, the method shifts the pricing of a fine linear program to a coarse counterpart. In this way, major decisions are taken in the coarse layer, while minor
details are tackled within the fine layer. We elucidate our methodology by an application to a complex railway rolling stock rotation problem. We provide comprehensive computational results that demonstrate the benefit of this new technique for the solution of large scale problems.

We present the problem of planning mobile tours of inspectors on German motorways to enforce the payment of the toll for heavy good trucks. This is a special type of vehicle routing problem with the objective to conduct as good inspections as possible on the complete network. In addition, we developed a personalized crew rostering model, to schedule the crews of the tours. The planning of daily tours and the rostering are combined in a novel integrated approach and formulated as a complex and large scale Integer Program. The main focus of this paper extends our previous publications on how different requirements for the rostering can be modeled in detail. The second focus is on a bi-criteria analysis of the planning problem to find the balance between the control quality and the roster acceptance. Finally, computational results on real-world instances show the practicability of our method and how different input parameters influence the problem complexity.

The task of the train timetabling problem or track allocation problem is to find conflict free schedules for a set of trains with predefined routes in a railway network. Especially for non-periodic instances models based on time expanded networks are often used. Unfortunately, the linear programming relaxation of these models is often extremely weak because these models do not describe combinatorial relations like overtaking possibilities very well. In this paper we extend the model by so called connected configuration subproblems. These subproblems perfectly describe feasible schedules of a small subset of trains (2-3) on consecutive track segments. In a Lagrangian relaxation approach we solve several of these subproblems together in order to produce solutions which consist of combinatorially compatible schedules along the track segments. The computational results on a mostly single track corridor taken from the INFORMS RAS Problem Solving Competition 2012 data indicate that our new solution approach is rather strong. Indeed, for this instance the solution of the Lagrangian relaxation is already integral.

We consider the problem of pattern detection in large scale
railway timetables. This problem arises in rolling stock optimization planning
in order to identify invariant sections of the timetable for
which a cyclic rotation plan is adequate.
We propose a dual reduction technique which leads to an decomposition
and enumeration method. Computational results for real
world instances demonstrate that the method is able to
produce optimal solutions as fast as standard MIP solvers.

Since railway companies have to apply for long-term public contracts to operate railway lines in public tenders, the question how they can estimate the operating cost for long-term periods adequately arises naturally. We consider a rolling stock rotation problem for a time period of ten years, which is based on a real world instance provided by an industry partner. We use a two stage approach for the cost estimation of the required rolling stock. In the first stage, we determine a weekly rotation plan. In the second stage, we roll out this weekly rotation plan for a longer time period and incorporate scheduled maintenance treatments. We present a heuristic approach and a mixed integer programming model to implement the process of the second stage. Finally, we discuss computational results for a real world tendering scenario.