### Refine

#### Year of publication

#### Document Type

- Article (188)
- ZIB-Report (65)
- In Proceedings (22)
- In Collection (9)
- Book chapter (7)
- Book (2)
- Doctoral Thesis (2)
- Other (2)
- Poster (2)
- Habilitation (1)

#### Language

- English (300)

#### Is part of the Bibliography

- no (300)

#### Keywords

- metastability (6)
- cycle decomposition (3)
- rare events (3)
- reaction coordinate (3)
- Bayesian inference (2)
- Clustering (2)
- DS-MLE (2)
- EM algorithm (2)
- Jeffreys prior (2)
- MPLE (2)

#### Institute

- Numerical Mathematics (138)
- ZIB Allgemein (29)
- Modeling and Simulation of Complex Processes (27)
- Computational Systems Biology (14)
- Visual Data Analysis (14)
- Computational Molecular Design (11)
- Mathematics for Life and Materials Science (5)
- Bioinformatics in Medicine (3)
- Visual and Data-centric Computing (2)
- AI in Society, Science, and Technology (1)

The Car-Parrinello (CP) approach to ab initio molecular dynamics serves as an approximation to time-dependent Born-Oppenheimer (BO) calculations. It replaces the explicit minimization of the energy functional by a fictitious Newtonian dynamics and therefore introduces an artificial mass parameter $\mu$ which controls the electronic motion. A recent theoretical investigation shows that the CP-error, i.e., the deviation of the CP--solution from the BO-solution {\em decreases} like $\mu^{1/2}$ asymptotically. Since the computational effort {\em increases} like $\mu^{-1/2}$, the choice of $\mu$ has to find a compromise between efficiency and accuracy. The asymptotical result is used in this paper to construct an easily implemented algorithm which automatically controls $\mu$: the parameter $\mu$ is repeatedly adapted during the simulation by choosing $\mu$ as large as possible while pushing an error measure below a user-given tolerance. The performance and reliability of the algorithm is illustrated by a typical example.

\noindent In molecular dynamics applications there is a growing interest in so-called {\em mixed quantum-classical} models. These models describe most atoms of the molecular system by the means of classical mechanics but an important, small portion of the system by the means of quantum mechanics. A particularly extensively used model, the QCMD model, consists of a {\em singularly perturbed}\/ Schrödinger equation nonlinearly coupled to a classical Newtonian equation of motion. This paper studies the singular limit of the QCMD model for finite dimensional Hilbert spaces. The main result states that this limit is given by the time-dependent Born-Oppenheimer model of quantum theory---provided the Hamiltonian under consideration has a smooth spectral decomposition. This result is strongly related to the {\em quantum adiabatic theorem}. The proof uses the method of {\em weak convergence} by directly discussing the density matrix instead of the wave functions. This technique avoids the discussion of highly oscillatory phases. On the other hand, the limit of the QCMD model is of a different nature if the spectral decomposition of the Hamiltonian happens not to be smooth. We will present a generic example for which the limit set is not a unique trajectory of a limit dynamical system but rather a {\em funnel} consisting of infinitely many trajectories.

The paper studies Hamiltonian systems with a strong potential forcing the solutions to oscillate on a very small time scale. In particular, we are interested in the limit situation where the size $\epsilon$ of this small time scale tends to zero but the velocity components remain oscillating with an amplitude variation of order ${\rm O}(1)$. The process of establishing an effective initial value problem for the limit positions will be called {\em homogenization} of the Hamiltonian system. This problem occurs in mechanics as the problem of realization of holonomic constraints, in plasma physics as the problem of guiding center motion, in the simulation of biomolecules as the so called smoothing problem. We suggest the systematic use of the notion of {\em weak convergence} in order to approach this problem. This methodology helps to establish unified and short proofs of the known results which throw light on the inherent structure of the problem. Moreover, we give a careful and critical review of the literature.

The paper presents the concept of a new type of algorithm for the numerical computation of what the authors call the {\em essential dynamics\/} of molecular systems. Mathematically speaking, such systems are described by Hamiltonian differential equations. In the bulk of applications, individual trajectories are of no specific interest. Rather, time averages of physical observables or relaxation times of conformational changes need to be actually computed. In the language of dynamical systems, such information is contained in the natural invariant measure (infinite relaxation time) or in almost invariant sets ("large" finite relaxation times). The paper suggests the direct computation of these objects via eigenmodes of the associated Frobenius-Perron operator by means of a multilevel subdivision algorithm. The advocated approach is different to both Monte-Carlo techniques on the one hand and long term trajectory simulation on the other hand: in our setup long term trajectories are replaced by short term sub-trajectories, Monte-Carlo techniques are just structurally connected via the underlying Frobenius-Perron theory. Numerical experiments with a first version of our suggested algorithm are included to illustrate certain distinguishing properties. A more advanced version of the algorithm will be presented in a second part of this paper.

The aim of this work is to study the accuracy and stability of the Chebyshev--approximation method as a time--discretization for wavepacket dynamics. For this frequently used discretization we introduce estimates of the approximation and round--off error. These estimates mathematically confirm the stability of the Chebyshev--approximation with respect to round--off errors, especially for very large stepsizes. But the results also disclose threads to the stability due to large spatial dimensions. All theoretical statements are illustrated by numerical simulations of an analytically solvable example, the harmonic quantum oszillator.

The Car-Parrinello method for ab-initio molecular dynamics avoids the explicit minimization of energy functionals given by functional density theory in the context of the quantum adiabatic approximation (time-dependent Born-Oppenheimer approximation). Instead, it introduces a fictitious classical dynamics for the electronic orbitals. For many realistic systems this concept allowed first-principle computer simulations for the first time. In this paper we study the {\em quantitative} influence of the involved parameter $\mu$, the fictitious electronic mass of the method. In particular, we prove by use of a carefully chosen two-time-scale asymptotics that the deviation of the Car-Parrinello method from the adiabatic model is of order ${\rm O}(\mu^{1/2})$ --- provided one starts in the ground state of the electronic system and the electronic excitation spectrum satisfies a certain non-degeneracy condition. Analyzing a two-level model problem we prove that our result cannot be improved in general. Finally, we show how to use the gained quantitative insight for an automatic control of the unphysical ``fake'' kinetic energy of the method.

{\footnotesize In classical Molecular Dynamics a molecular system is modelled by classical Hamiltonian equations of motion. The potential part of the corresponding energy function of the system includes contributions of several types of atomic interaction. Among these, some interactions represent the bond structure of the molecule. Particularly these interactions lead to extremely stiff potentials which force the solution of the equations of motion to oscillate on a very small time scale. There is a strong need for eliminating the smallest time scales because they are a severe restriction for numerical long-term simulations of macromolecules. This leads to the idea of just freezing the high frequency degrees of freedom (bond stretching and bond angles) via increasing the stiffness of the strong part of the potential to infinity. However, the naive way of doing this via holonomic constraints mistakenly ignores the energy contribution of the fast oscillations. The paper presents a mathematically rigorous discussion of the limit situation of infinite stiffness. It is demonstrated that the average of the limit solution indeed obeys a constrained Hamiltonian system but with a {\em corrected soft potential}. An explicit formula for the additive potential correction is given via a careful inspection of the limit energy of the fast oscillations. Unfortunately, the theory is valid only as long as the system does not run into certain resonances of the fast motions. Behind those resonances, there is no unique limit solution but a kind of choatic scenario for which the notion ``Takens chaos'' was coined. For demonstrating the relevance of this observation for MD, the theory is applied to a realistic, but still simple system: a single butan molecule. The appearance of ``Takens chaos'' in smoothed MD is illustrated and the consequences are discussed.}

This paper presents a mathematical derivation of a model for quantum-classical molecular dynamics (QCMD) as a {\em partial} classical limit of the full Schrödinger equation. This limit is achieved in two steps: separation of the full wavefunction and short wave asymptotics for its ``classical'' part. Both steps can be rigorously justified under certain smallness assumptions. Moreover, the results imply that neither the time-dependent self-consistent field method nor mixed quantum-semi-classical models lead to better approximations than QCMD since they depend on the separation step, too. On the other hand, the theory leads to a characterization of the critical situations in which the models are in danger of largely deviating from the solution of the full Schrödinger equation. These critical situations are exemplified in an illustrative numerical simulation: the collinear collision of an Argon atom with a harmonic quantum oscillator.

The interaction potential of molecular systems which are typically used in molecular dynamics can be split into two parts of essentially different stiffness. The strong part of the potential forces the solution of the equations of motion to oscillate on a very small time scale. There is a strong need for eliminating the smallest time scales because they are a severe restriction for numerical long-term simulations of macromolecules. This leads to the idea of just freezing the high frequency degrees of freedom (bond stretching and bond angles). However, the naive way of doing this via holonomic constraints is bound to produce incorrect results. The paper presents a mathematically rigorous discussion of the limit situation in which the stiffness of the strong part of the potential is increased to infinity. It is demonstrated that the average of the limit solution indeed obeys a constrained Hamiltonian system but with a {\em corrected soft potential}. An explicit formula for the additive potential correction is given and its significant contribution is demonstrated in an illustrative example. It appears that this correcting potential is definitely not identical with the Fixman-potential as was repeatedly assumed in the literature.

A theoretical investigation of the dynamic properties of integrated optical Er--doped waveguide lasers is presented. It includes the construction of a physical model and of numerical techniques which allow reliable simulations of the dynamical behaviour of the laser signal depending on essential parameters of the laser device and on its external, time--dependent pump radiation. Therefore, a physical theory is developed which describes the propagation of light and its interaction with the active substrate in the laser cavity. This is realized in two steps. First, a {\em fundamental model} based on Maxwell's equations and on rate equations for the transitions in the active medium is constructed. Since this turns out to prohibit reliable simulations, it is, in a second step, reformulated via averaging in time and space which suppresses the fluctuations on the fastest time scales but represents them correctly. For this {\em reduced model} reliable and efficient simulation techniques using adaptive control schemes are designed and implemented. We apply the linear--implicit Euler discretization with extrapolation in time and a multilevel quadrature scheme in space. Finally, the model is justified in comparison with experimental observations in four cases of technological relevance.