### Refine

#### Document Type

- ZIB-Report (20)
- In Proceedings (7)
- Article (6)
- Bachelor's Thesis (1)
- Master's Thesis (1)

#### Keywords

#### Institute

Transformations of Steiner tree problem variants have been frequently discussed in the literature. Besides allowing to easily transfer complexity results, they constitute a central pillar of exact state-of-the-art solvers for well-known variants such as the Steiner tree problem in graphs. In this paper transformations for both the prize-collecting Steiner tree problem and the maximum-weight connected subgraph problem to the Steiner arborescence problem are introduced for the first time. Furthermore, we demonstrate the considerable implications for practical solving approaches, including the computation of strong upper and lower bounds.

Current linear energy system models (ESM) acquiring to provide sufficient detail and reliability frequently bring along problems of both high intricacy and increasing scale. Unfortunately, the size and complexity of these problems often prove to be intractable even for commercial state-of-the-art linear programming solvers. This article describes an interdisciplinary approach to exploit the intrinsic structure of these large-scale linear problems to be able to solve them on massively parallel high-performance computers. A key aspect are extensions
to the parallel interior-point solver PIPS-IPM originally developed for stochastic optimization problems. Furthermore, a newly developed GAMS interface to the solver as well as some GAMS language extensions to model block-structured problems will be described.

A massively parallel interior-point solver for linear energy system models with block structure
(2019)

Linear energy system models are often a crucial component of system
design and operations, as well as energy policy consulting. Such models can lead to large-scale linear programs, which can be intractable even for state-of-the-art commercial solvers|already the available memory on a desktop machine might not be sufficient. Against this backdrop, this article introduces an interior-point solver that exploits common structures of
linear energy system models to efficiently run in parallel on distributed memory systems. The solver is designed for linear programs with doubly bordered
block-diagonal constraint matrix and makes use of a Schur complement
based decomposition. Special effort has been put into handling
large numbers of linking constraints and variables as commonly observed
in energy system models. In order to handle this strong linkage, a distributed
preconditioning of the Schur complement is used. In addition, the
solver features a number of more generic techniques such as parallel matrix
scaling and structure-preserving presolving. The implementation is
based on the existing parallel interior-point solver PIPS-IPM. We evaluate
the computational performance on energy system models with up to 700
million non-zero entries in the constraint matrix, and with more than 200
million columns and 250 million rows. This article mainly concentrates on
the energy system model ELMOD, which is a linear optimization model
representing the European electricity markets by the use of a nodal pricing
market clearing. It has been widely applied in the literature on energy
system analyses during the recent years. However, it will be demonstrated
that the new solver is also applicable to other energy system models.

Borne out of a surprising variety of practical applications, the maximum-weight connected subgraph problem has attracted considerable interest during the past years. This interest has not only led to notable research on theoretical properties, but has also brought about several (exact) solvers-with steadily increasing performance. Continuing along this path, the following article introduces several new algorithms such as reduction techniques and heuristics and describes their integration into an exact solver.
The new methods are evaluated with respect to both their theoretical and practical properties. Notably, the new exact framework allows to solve common problem instances from the literature faster than all previous approaches. Moreover, one large-scale benchmark instance from the 11th DIMACS Challenge can be solved for the first time to optimality and the primal-dual gap for two other ones can be significantly reduced.

The Steiner tree problem in graphs is a classical problem that commonly arises in practical applications as one of many variants. Although the different Steiner tree problem variants are usually strongly related, solution approaches employed so far have been prevalently problem-specific. Against this backdrop, the solver SCIP-Jack was created as a general-purpose framework that can be used to solve the classical Steiner tree problem and 11 of its variants. This versatility is achieved by transforming various problem variants into a general form and solving them by using a state-of-the-art MIP-framework. Furthermore, SCIP-Jack includes various newly developed algorithmic components such as preprocessing routines and heuristics. The result is a high-performance solver that can be employed in massively parallel environments and is capable of solving previously unsolved instances. After the introduction of SCIP-Jack at the 2014 DIMACS Challenge on Steiner problems, the overall performance of the solver has considerably improved. This article provides an overview on the current state.