### Refine

#### Year of publication

#### Document Type

- ZIB-Report (29)
- Article (6)
- In Proceedings (4)
- Book chapter (2)
- Doctoral Thesis (1)

#### Keywords

- real-time (5)
- ADAC (4)
- competitive analysis (4)
- soft time windows (4)
- triangulation (4)
- vehicle dispatching (4)
- Generalized Baues Problem (3)
- Online Optimization (3)
- column generation (3)
- elevator (3)

#### Institute

- ZIB Allgemein (29)
- Mathematical Optimization (11)

This paper gives a short introduction into combinatorial online optimization. It explains a few evaluation concepts of online algorithms, such as competitiveness, and discusses limitations in their application to real--world problems. The main focus, however, is a survey of combinatorial online problems coming up in practice, in particular, in large scale material flow and flexible manufacturing systems.

In ``classical'' optimization, all data of a problem instance are considered given. The standard theory and the usual algorithmic techniques apply to such cases only. Online optimization is different. Many decisions have to be made before all data are available. In addition, decisions once made cannot be changed. How should one act ``best'' in such an environment? In this paper we survey online problems coming up in combinatorial optimization. We first outline theoretical concepts, such as competitiveness against various adversaries, to analyze online problems and algorithms. The focus, however, lies on real-world applications. We report, in particular, on theoretical investigations and our practical experience with problems arising in transportation and the automatic handling of material.

In this paper we consider the following online transportation problem (\textsc{Oltp}): Objects are to be transported between the vertices of a given graph. Transportation requests arrive online, specifying the objects to be transported and the corresponding source and target vertex. These requests are to be handled by a server which commences its work at a designated origin vertex and which picks up and drops objects at their starts and destinations. After the end of its service the server returns to its start. The goal of \textsc{Oltp} is to come up with a transportation schedule for the server which finishes as early as possible. We first show a lower bound of~$5/3$ for the competitive ratio of any deterministic algorithm. We then analyze two simple and natural strategies which we call \textsf{REPLAN} and \textsf{IGNORE}. \textsf{REPLAN} completely discards its schedule and recomputes a new one when a new request arrives. \textsf{IGNORE} always runs a (locally optimal) schedule for a set of known requests and ignores all new requests until this schedule is completed. We show that both strategies, \textsf{REPLAN} and \textsf{IGNORE}, are $5/2$-competitive. We also present a somewhat less natural strategy \textsf{SLEEP}, which in contrast to the other two strategies may leave the server idle from time to time although unserved requests are known. We also establish a competitive ratio of~$5/2$ for the algorithm \textsf{SLEEP}. Our results are extended to the case of ``open schedules'' where the server is not required to return to its start position at the end of its service.

Given an affine surjection of polytopes $\pi: P \to Q$, the Generalized Baues Problem asks whether the poset of all proper polyhedral subdivisions of $Q$ which are induced by the map $\pi$ has the homotopy type of a sphere. We extend earlier work of the last two authors on subdivisions of cyclic polytopes to give an affirmative answer to the problem for the natural surjections between cyclic polytopes $\pi: C(n,d') \to C(n,d)$ for all $1 \leq d < d' < n$.

We develop and experimentally compare policies for the control of a system of $k$ elevators with capacity one in a transport environment with $\ell$ floors, an idealized version of a pallet elevator system in a large distribution center of the Herlitz PBS AG in Falkensee. Each elevator in the idealized system has an individual waiting queue of infinite capacity. On each floor, requests arrive over time in global waiting queues of infinite capacity. The goal is to find a policy that, without any knowledge about future requests, assigns an elevator to each req uest and a schedule to each elevator so that certain expected cost functions (e.g., the average or the maximal flow times) are minimized. We show that a reoptimization policy for minimizing average sq uared waiting times can be implemented to run in real-time ($1\,s$) using dynamic column generation. Moreover, in discrete event simulations with Poisson input it outperforms other commonly used polic ies like multi-server variants of greedy and nearest neighbor.

In a large distribution center of Herlitz AG, Berlin, we invesigated the elevator subsystem of the fully automated pallet transportation system. Each elevator may carry one pallet and has to serve eight levels. The goal is to minimize the average resp.\ the maximum flow time. The variants of this elevator control problem have been subject of recent theoretical research and are known as online-dial-a-ride problems. In this paper we investigate several online algorithms for several versions of online-dial-a-ride problems by means of a simulation program, developed on the basis of the simulation library AMSEL. We draw statistics from samples of randomly generated data providing for different load situations. Moreover, we provide preliminary studies with real production data for a system of five elevators connected by a conveyor circuit, as can be found at the Herlitz plant. We show which algorithms are best under certain load situations and which lead to break downs under particular circumstances.

Wo bleibt der Aufzug?
(1999)

This paper discusses online optimization of real-world transportation systems. We concentrate on transportation problems arising in production and manufacturing processes, in particular in company internal logistics. We describe basic techniques to design online optimization algorithms for such systems, but our main focus is decision support for the planner: which online algorithm is the most appropriate one in a particular setting? We show by means of several examples that traditional methods for the evaluation of online algorithms often do not suffice to judge the strengths and weaknesses of online algorithms. We present modifications of well-known evaluation techniques and some new methods, and we argue that the selection of an online algorithm to be employed in practice should be based on a sound combination of several theoretical and practical evaluation criteria, including simulation.