Refine
Year of publication
Document Type
- In Proceedings (42)
- Article (34)
- ZIB-Report (19)
- In Collection (3)
- Other (2)
- Book chapter (1)
- Doctoral Thesis (1)
- Poster (1)
- Research data (1)
Keywords
- model-based inversion (3)
- Monte Carlo (2)
- blood oxygen saturation (2)
- inverse problem (2)
- quantitative photoacoustic imaging (2)
- spectral unmixing (2)
- 2-photon microscopy (1)
- 2D distance map (1)
- Amira (1)
- Beton (1)
Institute
- Visual Data Analysis (103)
- Image Analysis in Biology and Materials Science (72)
- Visual Data Analysis in Science and Engineering (26)
- Therapy Planning (17)
- Visual and Data-centric Computing (3)
- Numerical Mathematics (2)
- Vergleichende Visualisierung (2)
- Distributed Algorithms and Supercomputing (1)
- ZIB Allgemein (1)
Im Rahmen der biomechanischen Simulation knöcherner Organe ist die Frage nach einer befriedigenden Materialbeschreibung nach wie vor ungelöst. Computertomographische Datensätze liefern eine räumliche Verteilung der (Röntgen-)Dichte und ermöglichen damit eine gute Darstellung der individuellen Geometrie. Weiter können die verschiedenen Materialbestandteile des Knochens, Spongiosa und Kortikalis, voneinander getrennt werden. Aber die richtungsabängige Information der Materialanisotropie ist verloren. In dieser Arbeit wird ein Ansatz für eine anisotrope Materialbeschreibung vorgestellt, die es ermöglicht, den Einfluss der individuellen knöchernen Struktur auf das makroskopische Materialverhalten abzuschätzen.
We present a level of detail method for trees based on ellipsoids and lines. We leverage the Expectation Maximization algorithm with a Gaussian Mixture Model to create a hierarchy of high-quality leaf clusterings, while the branches are simplified using agglomerative bottom-up clustering to preserve the connectivity. The simplification runs in a preprocessing step and requires no human interaction. For a fly by over and through a scene of 10k trees, our method renders on average at 40 ms/frame, up to 6 times faster than billboard clouds with comparable artifacts.
We present iCon.text, a kiosk platform for the iPad centered around artefacts, whose content and layout can be tailored without programming skills for specific museum exhibitions. The central metaphor to access information is a virtual postcard with one front and a customizable number of back sides that provide details about exhibits to museum visitors in textual and image form. Back sides can link to others cards. Access to these postcards is possible through one or more navigation views that can be navigated to from a navigation bar.
The entry point to the application is designed as a multitouch interactive pile of cards in a playful manner that allows visitors of any age an easy approach to the presentation and interaction metaphor. To directly access a certain postcard, a mosaic view can be uitilized to provide an overview about all available exhibits. A category view groups postcards into themes. Locating artefacts on a zoomable map or exhibition floor plan allows for conveying information about spatial contexts between different objects and their location. Furthermore, contexts can be illustrated with a two stage view comprising an overview and corresponding detail views to provide further insights into the spatial, temporal, and thematic contexts of artefacts. The application scaffolding allows the design of bilingual presentations to support exhibitions with an international audience. The logo of the presenting institution or exhibition can be incorporated to display the the kiosk's corporate design branding and to access an imprint or further informations. Usage is logged into files to provide a basis for extracting statistical information about the usage.
The details about the exhibits are presented as images and as such impose no limit to the design choices made by the content provider or exhibition designer.
The application (enhanced with a panoramic view) has been integrated successfully into a large special exhibition about the ancient city of Pergamon 2011/2012 at the Pergamon Museum Berlin within the interdisciplinary project "Berlin Sculpture Network".
This work introduces novel internal and external memory algorithms for computing voxel skeletons of massive voxel objects with complex network-like architecture and for converting these voxel skeletons to piecewise linear geometry, that is triangle meshes and piecewise straight lines. The presented techniques help to tackle the challenge of visualizing and analyzing 3d images of increasing size and complexity, which are becoming more and more important in, for example, biological and medical research. Section 2.3.1 contributes to the theoretical foundations of thinning algorithms with a discussion of homotopic thinning in the grid cell model. The grid cell model explicitly represents a cell complex built of faces, edges, and vertices shared between voxels. A characterization of pairs of cells to be deleted is much simpler than characterizations of simple voxels were before. The grid cell model resolves topologically unclear voxel configurations at junctions and locked voxel configurations causing, for example, interior voxels in sets of non-simple voxels. A general conclusion is that the grid cell model is superior to indecomposable voxels for algorithms that need detailed control of topology. Section 2.3.2 introduces a noise-insensitive measure based on the geodesic distance along the boundary to compute two-dimensional skeletons. The measure is able to retain thin object structures if they are geometrically important while ignoring noise on the object's boundary. This combination of properties is not known of other measures. The measure is also used to guide erosion in a thinning process from the boundary towards lines centered within plate-like structures. Geodesic distance based quantities seem to be well suited to robustly identify one- and two-dimensional skeletons. Chapter 6 applies the method to visualization of bone micro-architecture. Chapter 3 describes a novel geometry generation scheme for representing voxel skeletons, which retracts voxel skeletons to piecewise linear geometry per dual cube. The generated triangle meshes and graphs provide a link to geometry processing and efficient rendering of voxel skeletons. The scheme creates non-closed surfaces with boundaries, which contain fewer triangles than a representation of voxel skeletons using closed surfaces like small cubes or iso-surfaces. A conclusion is that thinking specifically about voxel skeleton configurations instead of generic voxel configurations helps to deal with the topological implications. The geometry generation is one foundation of the applications presented in Chapter 6. Chapter 5 presents a novel external memory algorithm for distance ordered homotopic thinning. The presented method extends known algorithms for computing chamfer distance transformations and thinning to execute I/O-efficiently when input is larger than the available main memory. The applied block-wise decomposition schemes are quite simple. Yet it was necessary to carefully analyze effects of block boundaries to devise globally correct external memory variants of known algorithms. In general, doing so is superior to naive block-wise processing ignoring boundary effects. Chapter 6 applies the algorithms in a novel method based on confocal microscopy for quantitative study of micro-vascular networks in the field of microcirculation.
This work introduces a novel streamline seeding technique based on dual streamlines that are orthogonal to the vector field, instead of tangential. The greedy algorithm presented here produces a net of orthogonal streamlines that is iteratively refined resulting in good domain coverage and a high degree of continuity and uniformity. The algorithm is easy to implement and efficient, and it naturally extends to curved surfaces.
An intuitive and sparse representation of the void space of porous materials supports the efficient analysis and visualization of interesting qualitative and quantitative parameters of such materials. We introduce definitions of the elements of this void space, here called pore space, based on its distance function, and present methods to extract these elements using the extremal structures of the distance function. The presented methods are implemented by an image processing pipeline that determines pore centers, pore paths and pore constrictions. These pore space elements build a graph that represents the topology of the pore space in a compact way. The representations we derive from μCT image data of realistic soil specimens enable the computation of many statistical parameters and, thus, provide a basis for further visual analysis and application-specific developments. We introduced parts of our pipeline in previous work. In this chapter, we present additional details and compare our results with the analytic computation of the pore space elements for a sphere packing in order to show the correctness of our graph computation.