### Refine

#### Year of publication

#### Document Type

- ZIB-Report (33)
- In Proceedings (10)
- Article (7)
- Book chapter (5)
- Book (1)
- In Collection (1)

#### Keywords

- line planning (6)
- integer programming (5)
- branch-and-cut (4)
- constraint integer programming (4)
- Online Optimization (3)
- Pseudo-Boolean (3)
- Routing (3)
- Telecommunications (3)
- column generation (3)
- computational complexity (3)

#### Institute

The \emph{line planning problem} is one of the fundamental problems in strategic planning of public and rail transport. It consists of finding lines and corresponding frequencies in a public transport network such that a given travel demand can be satisfied. There are (at least) two objectives. The transport company wishes to minimize its operating cost; the passengers request short travel times. We propose two new multi-commodity flow models for line planning. Their main features, in comparison to existing models, are that the passenger paths can be freely routed and that the lines are generated dynamically.

The line planning problem is one of the fundamental problems in strategic planning of public and rail transport. It consists in finding lines and corresponding frequencies in a network such that a giv en demand can be satisfied. There are two objectives. Passengers want to minimize travel times, the transport company wishes to minimize operating costs. We investigate three variants of a multi-commo dity flow model for line planning that differ with respect to passenger routings. The first model allows arbitrary routings, the second only unsplittable routings, and the third only shortest path rou tings with respect to the network. We compare these models theoretically and computationally on data for the city of Potsdam.

We present a branch-and-cut algorithm for the NP-hard maximum feasible subsystem problem: For a given infeasible linear inequality system, determine a feasible subsystem containing as many inequalities as possible. The complementary problem, where one has to remove as few inequalities as possible in order to render the system feasible, can be formulated as a set covering problem. The rows of this formulation correspond to irreducible infeasible subsystems, which can be exponentially many. The main issue of a branch-and-cut algorithm for MaxFS is to efficiently find such infeasible subsystems. We present three heuristics for the corresponding NP-hard separation problem and discuss further cutting planes. This paper contains an extensive computational study of our implementation on a variety of instances arising in a number of applications.

Morse matchings capture the essential structural information of discrete Morse functions. We show that computing optimal Morse matchings is NP-hard and give an integer programming formulation for the problem. Then we present polyhedral results for the corresponding polytope and report on computational results.

We study online multicommodity minimum cost routing problems in networks, where commodities have to be routed sequentially. Arcs are equipped with load dependent price functions defining the routing weights. We discuss an online algorithm that routes each commodity by minimizing a convex cost function that depends on the demands that are previously routed. We present a competitive analysis of this algorithm showing that for affine linear price functions this algorithm is $4K/2+K$-competitive, where $K$ is the number of commodities. For the parallel arc case this algorithm is optimal. Without restrictions on the price functions and network, no algorithm is competitive. Finally, we investigate a variant in which the demands have to be routed unsplittably.

In this paper we study online multicommodity routing problems in networks, in which commodities have to be routed sequentially. The flow of each commodity can be split on several paths. Arcs are equipped with load dependent price functions defining routing costs, which have to be minimized. We discuss a greedy online algorithm that routes each commodity by minimizing a convex cost function that only depends on the demands previously routed. We present a competitive analysis of this algorithm showing that for affine linear price functions this algorithm is 4K2 (1+K)2 -competitive, where K is the number of commodities. For the single-source single-destination case, this algorithm is optimal. Without restrictions on the price functions and network, no algorithm is competitive. Finally, we investigate a variant in which the demands have to be routed unsplittably.

Orbitopal Fixing
(2006)

The topic of this paper are integer programming models in which a subset of 0/1-variables encode a partitioning of a set of objects into disjoint subsets. Such models can be surprisingly hard to solve by branch-and-cut algorithms if the permutation of the subsets of the partition is irrelevant. This kind of symmetry unnecessarily blows up the branch-and-cut tree. We present a general tool, called orbitopal fixing, for enhancing the capabilities of branch-and-cut algorithms in solving this kind of symmetric integer programming models. We devise a linear time algorithm that, applied at each node of the branch-and-cut tree, removes redundant parts of the tree produced by the above mentioned permutations. The method relies on certain polyhedra, called orbitopes, which have been investigated in (Kaibel and Pfetsch (2006)). However, it does not add inequalities to the model, and thus, it does not increase the difficulty of solving the linear programming relaxations. We demonstrate the computational power of orbitopal fixing at the example of a graph partitioning problem motivated from frequency planning in mobile telecommunication networks.

In this paper, we empirically investigate the NP-hard problem of finding sparse solutions to linear equation systems, i.e., solutions with as few nonzeros as possible. This problem has received considerable interest in the sparse approximation and signal processing literature, recently. We use a branch-and-cut approach via the maximum feasible subsystem problem to compute optimal solutions for small instances and investigate the uniqueness of the optimal solutions. We furthermore discuss five (modifications of) heuristics for this problem that appear in different parts of the literature. For small instances, the exact optimal solutions allow us to evaluate the quality of the heuristics, while for larger instances we compare their relative performance. One outcome is that the basis pursuit heuristic performs worse, compared to the other methods. Among the best heuristics are a method due to Mangasarian and a bilinear approach.

We introduce orbitopes as the convex hulls of 0/1-matrices that are lexicographically maximal subject to a group acting on the columns. Special cases are packing and partitioning orbitopes, which arise from restrictions to matrices with at most or exactly one 1-entry in each row, respectively. The goal of investigating these polytopes is to gain insight into ways of breaking certain symmetries in integer programs by adding constraints, e.g., for a well-known formulation of the graph coloring problem. We provide a thorough polyhedral investigation of packing and partitioning orbitopes for the cases in which the group acting on the columns is the cyclic group or the symmetric group. Our main results are complete linear inequality descriptions of these polytopes by facet-defining inequalities. For the cyclic group case, the descriptions turn out to be totally unimodular, while for the symmetric group case, both the description and the proof are more involved. The associated separation problems can be solved in linear time.