### Refine

#### Year of publication

#### Document Type

- ZIB-Report (41)
- Article (27)
- In Proceedings (17)
- Book chapter (5)
- Doctoral Thesis (1)
- Habilitation (1)
- In Collection (1)

#### Keywords

- Integer Programming (3)
- Mixed Integer Programming (3)
- Steiner tree (3)
- Branch-and-Bound (2)
- Optimization (2)
- Polyhedral Combinatorics (2)
- Steiner tree packing (2)
- UMTS (2)
- cutting planes (2)
- Branching Rules (1)

#### Institute

Gegeben sei ein Graph $G=(V,E)$ mit positiven Kantenkapazitäten $c_e$ und Knotenmengen $T_1,\ldots,T_N$. Das Steinerbaumpackungs-Problem besteht darin, Kantenmengen $S_1,\ldots,S_N$ zu finden, so da\ss\ jedes $S_k$ die Knoten aus $T_k$ verbindet und jede Kante $e$ in höchstens $c_e$ Kantenmengen aus $S_1,\ldots,S_N$ vorkommt. Eine zulässige Lösung dieses Problems nennen wir eine Steinerbaumpackung. Ist zusätzlich eine Gewichtung der Kanten gegeben und nach einer bezüglich dieser Gewichtung minimalen Steinerbaumpackung gesucht, so sprechen wir vom gewichteten Steinerbaumpackungs-Problem. Die Motivation zum Studium dieses Problems kommt aus dem Entwurf elektronischer Schaltungen. Ein dort auftretendes Teilproblem ist das sogenannte Verdrahtungsproblem, das im wesentlichen darin besteht, gegebene Punktmengen unter bestimmten Nebenbedingungen und Optimalitätskriterien auf einer Grundfläche zu verbinden. Wir studieren das Steinerbaumpackungs-Problem aus polyedrischer Sicht und definieren ein Polyeder, dessen Ecken genau den Steinerbaumpackungen entsprechen. Anschlie\ss end versuchen wir, dieses Polyeder durch gute'' beziehungsweise facetten-definierenden Ungleichungen zu beschreiben. Basierend auf diesen Ungleichungen entwickeln wir ein Schnittebenenverfahren. Die Lösung des Schnittebenenverfahrens liefert eine untere Schranke für die Optimallösung und dient als Grundlage für die Entwicklung guter Primalheuristiken. Wir haben das von uns implementierte Schnittebenenverfahren an einem Spezialfall des Verdrahtungsproblems, dem sogenannten Switchbox-Verdrahtungsproblem, getestet und vielversprechende Ergebnisse erzielt.

In this thesis we study and solve integer programs with block structure, i.\,e., problems that after the removal of certain rows (or columns) of the constraint matrix decompose into independent subproblems. The matrices associated with each subproblem are called blocks and the rows (columns) to be removed linking constraints (columns). Integer programs with block structure come up in a natural way in many real-world applications. The methods that are widely used to tackle integer programs with block structure are decomposition methods. The idea is to decouple the linking constraints (variables) from the problem and treat them at a superordinate level, often called master problem. The resulting residual subordinate problem then decomposes into independent subproblems that often can be solved more efficiently. Decomposition methods now work alternately on the master and subordinate problem and iteratively exchange information to solve the original problem to optimality. In Part I we follow a different approach. We treat the integer programming problem as a whole and keep the linking constraints in the formulation. We consider the associated polyhedra and investigate the polyhedral consequences of the involved linking constraints. The variety and complexity of the new inequalities that come into play is illustrated on three different types of real-world problems. The applications arise in the design of electronic circuits, in telecommunication and production planning. We develop a branch-and-cut algorithm for each of these problems, and our computational results show the benefits and limits of the polyhedral approach to solve these real-world models with block structure. Part II of the thesis deals with general mixed integer programming problems, that is integer programs with no apparent structure in the constraint matrix. We will discuss in Chapter 5 the main ingredients of an LP based branch-and-bound algorithm for the solution of general integer programs. Chapter 6 then asks the question whether general integer programs decompose into certain block structures and investigate whether it is possible to recognize such a structure. The remaining two chapters exploit information about the block structure of an integer program. In Chapter 7 we parallelize parts of the dual simplex algorithm, the method that is commonly used for the solution of the underlying linear programs within a branch-and-cut algorithm. In Chapter 8 we try to detect small blocks in the constraint matrix and to derive new cutting planes that strengthen the integer programming formulation. These inequalities may be associated with the intersection of several knapsack problems. We will see that they significantly improve the quality of the general integer programming solver introduced in Chapter 5.

This survey presents cutting planes that are useful or potentially useful in solving mixed integer programs. Valid inequalities for i) general integer programs, ii) problems with local structure such as knapsack constraints, and iii) problems with 0-1 coefficient matrices, such as set packing, are examined in turn. Finally the use of valid inequalities for classes of problems with structure, such as network design, is explored.

Mobile telecommunication systems establish a large number of communication links with a limited number of available frequencies; reuse of the same or adjacent frequencies on neighboring links causes interference. The task to find an assignment of frequencies to channels with minimal interference is the frequency assignment problem. The frequency assignment problem is usually treated as a graph coloring problem where the number of colors is minimized, but this approach does not model interference minimization correctly. We give in this paper a new integer programming formulation of the frequency assignment problem, the orientation model, and develop a heuristic two-stage method to solve it. The algorithm iteratively solves an outer and an inner optimization problem. The outer problem decides for each pair of communication links which link gets the higher frequency and leads to an acyclic subdigraph problem with additional longest path restrictions. The inner problem to find an optimal assignment respecting an orientation leads to a min-cost flow problem.

Let $G=(V,E)$ be a graph and $T\subseteq V$ be a node set. We call an edge set $S$ a Steiner tree with respect to $T$ if $S$ connects all pairs of nodes in $T$. In this paper we address the following problem, which we call the weighted Steiner tree packing problem. Given a graph $G=(V,E)$ with edge weights $w_e$, edge capacities $c_e, e \in E,$ and node sets $T_1,\ldots,T_N$, find edge sets $S_1,\ldots,S_N$ such that each $S_k$ is a Steiner tree with respect to $T_k$, at most $c_e$ of these edge sets use edge $e$ for each $e\in E$, and such that the sum of the weights of the edge sets is minimal. Our motivation for studying this problem arises from the routing problem in VLSI-design, where given sets of points have to be connected by wires. We consider the Steiner tree packing Problem from a polyhedral point of view and define an appropriate polyhedron, called the Steiner tree packing polyhedron. The goal of this paper is to (partially) describe this polyhedron by means of inequalities. It turns out that, under mild assumptions, each inequality that defines a facet for the (single) Steiner tree polyhedron can be lifted to a facet-defining inequality for the Steiner tree packing polyhedron. The main emphasis of this paper lies on the presentation of so-called joint inequalities that are valid and facet-defining for this polyhedron. Inequalities of this kind involve at least two Steiner trees. The classes of inequalities we have found form the basis of a branch & cut algorithm. This algorithm is described in our companion paper SC 92-09.

In this paper we describe a cutting plane algorithm for the Steiner tree packing problem. We use our algorithm to solve some switchbox routing problems of VLSI-design and report on our computational experience. This includes a brief discussion of separation algorithms, a new LP-based primal heuristic and implementation details. The paper is based on the polyhedral theory for the Steiner tree packing polyhedron developed in our companion paper SC 92-8 and meant to turn this theory into an algorithmic tool for the solution of practical problems.

Quadratic 0/1 Optimization and a Decomposition Approach for the Placement of Electronic Circuits.
(1992)

The placement in the layout design of electronic circiuts consists of finding a non- overlapping assignment of rectangular cells to positions on the chip so what wireability is guaranteed and certain technical constraints are met.This problem can be modelled as a quadratic 0/1- program subject to linear constraints. We will present a decomposition approach to the placement problem and give results about $NP$-hardness and the existence of $\varepsilon$-approximative algorithms for the involved optimization problems. A graphtheoretic formulation of these problems will enable us to develop approximative algorithms. Finally we will present details of the implementation of our approach and compare it to industrial state of the art placement routines. {\bf Keywords:} Quadratic 0/1 optimization, Computational Complexity, VLSI-Design.

In this paper we describe and discuss a problem that arises in the (global) design of a main frame computer. The task is to assign certain functional units to a given number of so called multi chip modules or printed circuit boards taking into account many technical constraints and minimizing a complex objective function. We describe the real world problem. A thorough mathematical modelling of all aspects of this problem results in a rather complicated integer program that seems to be hopelessly difficult -- at least for the present state of integer programming technology. We introduce several relaxations of the general model, which are also $NP$-hard, but seem to be more easily accessible. The mathematical relations between the relaxations and the exact formulation of the problem are discussed as well.

{\def\N{{\cal N}} \def\R{\hbox{\rm I\kern-2pt R}} \def\MN{{\rm I\kern-2pt N}} In this paper we study the following problem, which we call the weighted routing problem. Let be given a graph $G=(V,E)$ with non-negative edge weights $w_e\in\R_+$ and integer edge capacities $c_e\in\MN$ and let $\N=\{T_1,\ldots,T_N\}$, $N\ge 1$, be a list of node sets. The weighted routing problem consists in finding edge sets $S_1,\ldots,S_N$ such that, for each $k\in\{1,\ldots,N\}$, the subgraph $(V(S_k),S_k)$ contains an $[s,t]$-path for all $s,t\in T_k$, at most $c_e$ of these edge sets use edge $e$ for each $e\in E$, and such that the sum of the weights of the edge sets is minimal. Our motivation for studying this problem arises from the routing problem in VLSI-design, where given sets of points have to be connected by wires. We consider the weighted routing problem from a polyhedral point of view. We define an appropriate polyhedron and try to (partially) describe this polyhedron by means of inequalities. We briefly sketch our separation algorithms for some of the presented classes of inequalities. Based on these separation routines we have implemented a branch and cut algorithm. Our algorithm is applicable to an important subclass of routing problems arising in VLSI-design, namely to problems where the underlying graph is a grid graph and the list of node sets is located on the outer face of the grid. We report on our computational experience with this class of problem instances.}

In this paper we continue the investigations in [GMW92a] for the \def\sbppo{Steiner tree packing polyhedron} \sbppo. We present several new classes of valid inequalities and give sufficient (and necessary) conditions for these inequalities to be facet-defining. It is intended to incorporate these inequalities into an existing cutting plane algorithm that is applicable to practical problems arising in the design of electronic circuits.