### Refine

#### Year of publication

#### Document Type

- ZIB-Report (28)
- Habilitation (1)

#### Keywords

- Competitive Analysis (5)
- competitive analysis (5)
- online optimization (5)
- ADAC (4)
- real-time (4)
- soft time windows (4)
- vehicle dispatching (4)
- Online Optimization (3)
- Online-Optimierung (3)
- elevator (3)

#### Institute

- ZIB Allgemein (28)
- Mathematical Optimization (2)

Wo bleibt der Aufzug?
(1999)

Euler is Standing in Line
(1999)

In this paper we study algorithms for ``Dial-a-Ride'' transportation problems. In the basic version of the problem we are given transportation jobs between the vertices of a graph and the goal is to find a shortest transportation that serves all the jobs. This problem is known to be NP-hard even on trees. We consider the extension when precedence relations between the jobs with the same source are given. Our results include a polynomial time algorithm on paths and an approximation algorithm on general graphs with a performance of~$9/4$. For trees we improve the performance to~$5/3$.

In this paper, we analyze algorithms for the online dial-a-ride problem with request sets that fulfill a certain worst-case restriction: roughly speaking, a set of requests for the online dial-a-ride problem is reasonable if the requests that come up in a sufficiently large time period can be served in a time period of at most the same length. This new notion is a stability criterion implying that the system is not overloaded. The new concept is used to analyze the online dial-a-ride problem for the minimization of the maximal resp.\ average flow time. Under reasonable load it is possible to distinguish the performance of two particular algorithms for this problem, which seems to be impossible by means of classical competitive analysis.

In a large distribution center of Herlitz AG, Berlin, we invesigated the elevator subsystem of the fully automated pallet transportation system. Each elevator may carry one pallet and has to serve eight levels. The goal is to minimize the average resp.\ the maximum flow time. The variants of this elevator control problem have been subject of recent theoretical research and are known as online-dial-a-ride problems. In this paper we investigate several online algorithms for several versions of online-dial-a-ride problems by means of a simulation program, developed on the basis of the simulation library AMSEL. We draw statistics from samples of randomly generated data providing for different load situations. Moreover, we provide preliminary studies with real production data for a system of five elevators connected by a conveyor circuit, as can be found at the Herlitz plant. We show which algorithms are best under certain load situations and which lead to break downs under particular circumstances.

Das vorliegende Skript bietet eine Einf{ü}hrung in die Graphentheorie und graphentheoretische Algorithmen. Im zweiten Kapitel werden Grundbegriffe der Graphentheorie vorgestellt. Das dritte Kapitel besch{ä}ftigt sich mit der Existenz von Wegen in Graphen. Hier wird auch die L{ö}suung des ber{ü}hmten K{ö}nigsberger Br{ü}ckenproblems aufgezeigt und der Satz von Euler bewiesen. Im vierten Kapitel wird gezeigt, wie man auf einfache Weise die Zusammenhangskomponenten eines Graphen bestimmen kann. Im Kapitel sechs wird dann sp{ä}ter mit der Tiefensuche ein Verfahren vorgestellt, das schneller arbeitet und mit dessen Hilfe man noch mehr Informationen {ü}ber die Struktur eines Graphen gewinnen kann. In den folgenden Kapiteln werden Algorithmen vorgestellt, um minimale aufspannenden B{ä}ume, k{ü}rzeste Wege und maximale Fl{ü}sse in Graphen zu bestimmen. Am Ende des Skripts wird ein kurzer Einblick in die planaren Graphen und Graphhomomorphismen geboten.

The traveling repairman problem (TRP) is a variant of the famous traveling salesman problem (TSP). The objective for the TRP is to minimize the latency, that is the the weighted sum of completion times of the cities, where the completion time of a city is defined to be the time in the tour before the city is reached. In the online traveling repairman problem (OLTRP) requests for visits to cities (points in a metric space) arrive online while the repairman is traveling. We analyze the performance of algorithms using competitive analysis, where the cost of an online algorithm is compared to that of an optimal offline algorithm. An optimal offline algorithm knows the entire request sequence in advance and can serve it with minimum cost. Recently, Feuerstein and Stougie presented a $9$-competitive algorithm for the OLTRP on the real line. In this paper we show how to use techniques from online-scheduling to obtain an $8$-competitive deterministic algorithm which works for any metric space. We also present a randomized algorithm which has a competitive ratio of $\frac{4}{\ln 2}\approx 5.7708$ against an oblivious adversary. All of our results also hold for the ``dial-a-ride'' generalization of the OLTRP, where objects have to be picked up and delivered by a server.

In the online traveling salesman problem requests for visits to cities (points in a metric space) arrive online while the salesman is traveling. The salesman moves at no more than unit speed and starts and ends his work at a designated origin. The objective is to find a routing for the salesman which finishes as early as possible. Performance of algorithms is measured through their competitive ratio, comparing the outcome of the algorithms with that of an adversary who provides the problem instance and therefore is able to achieve the optimal offline solution. Objections against such omnipotent adversaries have lead us to devise an adversary that is in a natural way, in the context of routing problems, more restricted in power. For the exposition we consider the online traveling salesman problem on the metric space given by the non-negative part of the real line. We show that a very natural strategy is~$3/2$-competitive against the conventional adversary, which matches the lower bound on competitive ratios achievable for algorithms for this problem. Against the more ``\emph{fair adversary}'', that we propose, we show that there exists an algorithm with competitive ratio $\frac{1+\sqrt{17}}{4}\approx 1.28$ and provide a matching lower bound. We also show competitiveness results for a special class of algorithms (called zealous algorithms) that do not allow waiting time for the server as long as there are requests unserved.

Several practical instances of network design problems require the network to satisfy multiple constraints. In this paper, we address the \emph{Budget Constrained Connected Median Problem}: We are given an undirected graph $G = (V,E)$ with two different edge-weight functions $c$ (modeling the construction or communication cost) and $d$ (modeling the service distance), and a bound~$B$ on the total service distance. The goal is to find a subtree~$T$ of $G$ with minimum $c$-cost $c(T)$ subject to the constraint that the sum of the service distances of all the remaining nodes $v \in V\setminus T$ to their closest neighbor in~$T$ does not exceed the specified budget~$B$. This problem has applications in optical network design and the efficient maintenance of distributed databases. We formulate this problem as bicriteria network design problem, and present bicriteria approximation algorithms. We also prove lower bounds on the approximability of the problem that demonstrate that our performance ratios are close to best possible

In ``classical'' optimization, all data of a problem instance are considered given. The standard theory and the usual algorithmic techniques apply to such cases only. Online optimization is different. Many decisions have to be made before all data are available. In addition, decisions once made cannot be changed. How should one act ``best'' in such an environment? In this paper we survey online problems coming up in combinatorial optimization. We first outline theoretical concepts, such as competitiveness against various adversaries, to analyze online problems and algorithms. The focus, however, lies on real-world applications. We report, in particular, on theoretical investigations and our practical experience with problems arising in transportation and the automatic handling of material.

In this paper we consider the following online transportation problem (\textsc{Oltp}): Objects are to be transported between the vertices of a given graph. Transportation requests arrive online, specifying the objects to be transported and the corresponding source and target vertex. These requests are to be handled by a server which commences its work at a designated origin vertex and which picks up and drops objects at their starts and destinations. After the end of its service the server returns to its start. The goal of \textsc{Oltp} is to come up with a transportation schedule for the server which finishes as early as possible. We first show a lower bound of~$5/3$ for the competitive ratio of any deterministic algorithm. We then analyze two simple and natural strategies which we call \textsf{REPLAN} and \textsf{IGNORE}. \textsf{REPLAN} completely discards its schedule and recomputes a new one when a new request arrives. \textsf{IGNORE} always runs a (locally optimal) schedule for a set of known requests and ignores all new requests until this schedule is completed. We show that both strategies, \textsf{REPLAN} and \textsf{IGNORE}, are $5/2$-competitive. We also present a somewhat less natural strategy \textsf{SLEEP}, which in contrast to the other two strategies may leave the server idle from time to time although unserved requests are known. We also establish a competitive ratio of~$5/2$ for the algorithm \textsf{SLEEP}. Our results are extended to the case of ``open schedules'' where the server is not required to return to its start position at the end of its service.