### Refine

#### Year of publication

#### Document Type

- ZIB-Report (67)
- Article (31)
- In Proceedings (20)
- Book chapter (11)
- In Collection (3)
- Other (3)
- Doctoral Thesis (2)
- Report (2)
- Book (1)
- Habilitation (1)

#### Keywords

- Mixed Integer Programming (8)
- Integer Programming (6)
- IP (5)
- branch-and-cut (5)
- mixed integer programming (5)
- UMTS (4)
- branch-and-bound (4)
- MIP (3)
- linear programming (3)
- maximum-weight connected subgraph (3)

#### Institute

- Mathematical Optimization (94)
- Mathematical Optimization Methods (28)
- ZIB Allgemein (22)
- Scientific Information (5)
- Energy Network Optimization (2)
- KOBV (1)

In this paper we present the implementation of a branch-and-cut algorithm for solving Steiner tree problems in graphs. Our algorithm is based on an integer programming formulation for directed graphs and comprises preprocessing, separation algorithms and primal heuristics. We are able to solve all problem instances discussed in literature to optimality, including one to our knowledge not yet solved problem. We also report on our computational experiences with some very large Steiner tree problems arising from the design of electronic circuits. All test problems are gathered in a newly introduced library called {\em SteinLib} that is accessible via World Wide Web.

In this paper we present the {\em SteinLib}, a library of data sets for the Steiner tree problem in graphs. This library extends former libraries on Steiner tree problems by many new interesting and difficult instances, most of them arising from real-world applications. We give a survey on the difficulty of these problem instances by giving references to state-of-the-art software packages that were the first or are currently among the best to solve these instances.

ZIMPL User Guide
(2001)

MIPLIB 2010
(2010)

This paper reports on the fifth version of the Mixed Integer Programming Library.
The MIPLIB 2010 is the first MIPLIB release that has been assembled by a large group from academia and from industry, all of whom work in integer programming. There was mutual consent that the concept of the library had to be expanded in order to fulfill the needs of the community. The new version comprises 361 instances sorted into several groups.
This includes the main benchmark test set of 87 instances, which
are all solvable by today's codes, and also the challenge test set with 164 instances, many of which are currently unsolved.
For the first time, we include scripts to run automated tests in a predefined way. Further, there is a solution checker to
test the accuracy of provided solutions using exact arithmetic.

We present an exact rational solver for mixed-integer linear programming
that avoids the numerical inaccuracies inherent in the floating-point
computations used by existing software. This allows the solver to be used
for establishing theoretical results and in applications where correct
solutions are critical due to legal and financial consequences. Our solver
is a hybrid symbolic/numeric implementation of LP-based branch-and-bound,
using numerically-safe methods for all binding computations in the search
tree. Computing provably accurate solutions by dynamically choosing the
fastest of several safe dual bounding methods depending on the structure of
the instance, our exact solver is only moderately slower than an inexact
floating-point branch-and-bound solver. The software is incorporated into
the SCIP optimization framework, using the exact LP solver QSopt_ex and the
GMP arithmetic library. Computational results are presented for a suite of
test instances taken from the MIPLIB and Mittelmann collections.

Gas distribution networks are complex structures that consist of
passive pipes, and active, controllable elements such as valves and
compressors. Controlling such network means to find a suitable setting
for all active components such that a nominated amount of gas can be
transmitted from entries to exits through the network, without
violating physical or operational constraints. The control of a
large-scale gas network is a challenging task from a practical point
of view. In most companies the actual controlling process is supported
by means of computer software that is able to simulate the flow of the
gas. However, the active settings have to be set manually within such
simulation software. The solution quality thus depends on the
experience of a human planner.
When the gas network is insufficient for the transport then topology
extensions come into play. Here a set of new pipes or active elements
is determined such that the extended network admits a feasible control
again. The question again is how to select these extensions and where
to place them such that the total extension costs are
minimal. Industrial practice is again to use the same simulation
software, determine extensions by experience, add them to the virtual
network, and then try to find a feasible control of the active
elements. The validity of this approach now depends even more on the
human planner.
Another weakness of this manual simulation-based approach is that it
cannot establish infeasibility of a certain gas nomination, unless all
settings of the active elements are tried. Moreover, it is impossible
to find a cost-optimal network extension in this way.
In order to overcome these shortcomings of the manual planning
approach we present a new approach, rigorously based on mathematical
optimization. Hereto we describe a model for finding feasible
controls and then extend this model such that topology extensions can
additionally and simultaneously be covered. Numerical results for real-world instances are presented and
discussed.

Mixed integer programming (MIP) has become one of the most important techniques in Operations Research and Discrete Optimization. SCIP (Solving Constraint Integer Programs) is currently one of the fastest non-commercial MIP solvers. It is based on the branch-and-bound procedure in which the problem is recursively split into smaller subproblems, thereby creating a so-called branching tree. We present ParaSCIP, an extension of SCIP, which realizes a parallelization on a distributed memory computing environment. ParaSCIP uses SCIP solvers as independently running processes to solve subproblems (nodes of the branching tree) locally. This makes the parallelization development independent of the SCIP development. Thus, ParaSCIP directly profits from any algorithmic progress in future versions of SCIP. Using a first implementation of ParaSCIP, we were able to solve two previously unsolved instances from MIPLIB2003, a standard test set library for MIP solvers. For these computations, we used up to 2048 cores of the HLRN~II supercomputer.

Given the steady increase in cores per CPU, it is only a matter of time
until supercomputers will have a million or more cores. In this article, we
investigate the opportunities and challenges that will arise when trying to
utilize this vast computing power to solve a single integer linear optimization
problem. We also raise the question of whether best practices in sequential
solution of ILPs will be eﬀective in massively parallel environments.

In the simplex algorithm, solving linear systems with the basis matrix and its transpose accounts for a large part of the total computation time. We investigate various methods from modern numerical linear algebra to improve the computation speed of the basis updates arising in LPs. The experiments are executed on a large real-world test set. The most widely used solution technique is sparse LU factorization, paired with an updating scheme that allows to use the factors over several iterations. Clearly, small number of ﬁll-in elements in the LU factors is critical for the overall performance. Using a wide range of LPs we show numerically that after a simple permutation the non-triangular part of the basis matrix is so small, that the whole matrix can be factorized with (relative) ﬁll-in close to the optimum. This permutation has been exploited by simplex practitioners for many years. But to our knowledge no systematic numerical study has been published that demonstrates the eﬀective reduction to a surprisingly small non-triangular problem, even for large scale LPs. For the factorization of the non-triangular part most existing simplex codes use some variant of dynamic Markowitz pivoting, which originated in the late 1950s. We also show numerically that, in terms of ﬁll-in and in the simplex context, dynamic Markowitz is quite consistently superior to other, more recently developed techniques.

In this paper we investigate the performance of several out-of-the box solvers for mixed-integer quadratically constrained programmes (MIQCPs) on an open pit mine production scheduling problem with mixing constraints. We compare the solvers BARON, Couenne, SBB, and SCIP to a problem-specific algorithm on two different MIQCP formulations. The computational results presented show that general-purpose solvers with no particular knowledge of problem structure are able to nearly match the performance of a hand-crafted algorithm.