### Refine

#### Document Type

- Article (8)
- ZIB-Report (8)
- Book chapter (3)
- In Proceedings (2)
- Doctoral Thesis (1)

#### Keywords

- Mixed-Integer Nonlinear Programming (4)
- Network Design (2)
- Relaxations (2)
- Buchungsvalidierung (1)
- Cutting Planes (1)
- Duality (1)
- Entry-Exit Model (1)
- Gas Distribution Networks (1)
- Gas Market Liberalization (1)
- Gas Network Access Regulation (1)

#### Institute

Gas distribution networks are complex structures that consist of
passive pipes, and active, controllable elements such as valves and
compressors. Controlling such network means to find a suitable setting
for all active components such that a nominated amount of gas can be
transmitted from entries to exits through the network, without
violating physical or operational constraints. The control of a
large-scale gas network is a challenging task from a practical point
of view. In most companies the actual controlling process is supported
by means of computer software that is able to simulate the flow of the
gas. However, the active settings have to be set manually within such
simulation software. The solution quality thus depends on the
experience of a human planner.
When the gas network is insufficient for the transport then topology
extensions come into play. Here a set of new pipes or active elements
is determined such that the extended network admits a feasible control
again. The question again is how to select these extensions and where
to place them such that the total extension costs are
minimal. Industrial practice is again to use the same simulation
software, determine extensions by experience, add them to the virtual
network, and then try to find a feasible control of the active
elements. The validity of this approach now depends even more on the
human planner.
Another weakness of this manual simulation-based approach is that it
cannot establish infeasibility of a certain gas nomination, unless all
settings of the active elements are tried. Moreover, it is impossible
to find a cost-optimal network extension in this way.
In order to overcome these shortcomings of the manual planning
approach we present a new approach, rigorously based on mathematical
optimization. Hereto we describe a model for finding feasible
controls and then extend this model such that topology extensions can
additionally and simultaneously be covered. Numerical results for real-world instances are presented and
discussed.

Die mittel- und längerfristige Planung für den Gastransport hat sich durch
Änderungen in den regulatorischen Rahmenbedingungen stark verkompliziert.
Kernpunkt ist die Trennung von Gashandel und -transport. Dieser Artikel
diskutiert die hieraus resultierenden mathematischen Planungsprobleme,
welche als Validierung von Nominierungen und Buchungen, Bestimmung der
technischen Kapazität und Topologieplanung bezeichnet werden. Diese
mathematischen Optimierungsprobleme werden vorgestellt und Lösungsansätze
skizziert.

We consider a nonlinear nonconvex network flow problem that arises, for example, in natural gas or water transmission networks. Given is such network with active and passive components, that is, valves, compressors, pressure regulators (active) and pipelines (passive), and a desired amount of flow at certain specified entry and exit nodes of the network. Besides flow conservation constraints in the nodes the flow must fulfill nonlinear nonconvex pressure loss constraints on the arcs subject to potential values (i.e., pressure levels) in both end nodes of each arc. The problem is how to numerically compute this flow and pressures. We review an existing approach of Maugis (1977) and extend it to the case of networks with active elements (for example, compressors). We further examine different ways of relaxations for the nonlinear network flow model. We compare different approaches based on nonlinear optimization numerically on a set of test instances.

We consider a nonlinear nonconvex network design problem that arises in the extension of natural gas transmission networks. Given is such network with active and passive components, that is, valves, compressors, pressure regulators (active) and pipelines (passive), and a desired amount of flow at certain specified entry and exit nodes of the network. Besides flow conservation constraints in the nodes the flow must fulfill nonlinear nonconvex pressure loss constraints on the arcs subject to potential values (i.e., pressure levels) in both end nodes of each arc. Assume that there does not exist a feasible flow that fulfills all physical constraints and meets the desired entry and exit amounts. Then a natural question is where to extend the network by adding pipes in the most economic way such that this flow becomes feasible. Answering this question is computationally demanding because of the difficult problem structure. We use mixed-integer nonlinear programming techniques that rely on an outer approximation of the overall problem, and a branching on decision variables. We formulate a new class of valid inequalities (or cutting planes) which reduce the overall solution time when added to the formulation. We demonstrate the computational merits of our approach on test instances.

In this article we investigate methods to solve a fundamental task in gas transportation, namely the validation of nomination problem: Given a gas transmission network consisting of passive pipelines and active, controllable elements and given an amount of gas at every entry and exit point of the network, find operational settings for all active elements such that there exists a network state meeting all physical, technical, and legal constraints.
We describe a two-stage approach to solve the resulting complex and numerically difficult mixed-integer non-convex nonlinear feasibility problem. The first phase consists of four distinct algorithms facilitating mixed-integer linear, mixed-integer nonlinear, reduced nonlinear, and complementarity constrained methods to compute possible settings for the discrete decisions. The second phase employs a precise continuous nonlinear programming model of the gas network. Using this setup, we are able to compute high quality solutions to real-world industrial instances whose size is significantly larger than networks that have appeared in the literature previously.

The recently imposed new gas market liberalization rules in Germany lead to a change of business of gas network operators.
While previously network operator and gas vendor where united, they were forced to split up into independent companies.
The network has to be open to any other gas trader at the same conditions, and free network capacities have to be identified and publicly offered in a non-discriminatory way.
We show that these new paradigms lead to new and challenging mathematical optimization problems.
In order to solve them and to provide meaningful results for practice, all aspects of the underlying problems, such as combinatorics, stochasticity, uncertainty, and nonlinearity, have to be addressed.
With such special-tailored solvers, free network capacities and topological network extensions can, for instance, be determined.

We present a novel heuristic algorithm to identify feasible solutions of a mixed-integer nonlinear programming problem arising in natural gas transportation: the selection of new pipelines to enhance the network's capacity to a desired level in a cost-efficient way. We solve this problem in a linear programming based branch-and-cut approach, where we deal with the nonlinearities by linear outer approximation and spatial branching. At certain nodes of the branching tree, we compute a KKT point for a nonlinear relaxation. Based on the information from the KKT point we alter some of the integer variables in a locally promising way. We describe this heuristic for general MINLPs and then show how to tailor the heuristic to exploit our problem-specific structure. On a test set of real-world instances, we are able to increase the chance of identifying feasible solutions by some order of magnitude compared to standard MINLP heuristics that are already built in the general-purpose MINLP solver SCIP.

One-quarter of Europe’s energy demand is provided by natural gas distributed through a vast pipeline network covering the whole of Europe. At a cost of 1 million Euros per kilometer the extension of the European pipeline network is already a multi-billion Euro business. Therefore, automatic planning tools that support the decision process are desired. We model the topology optimization problem in gas networks by a mixed-integer nonlinear program (MINLP). This gives rise to a so-called active transmission problem, a continuous nonlinear non-convex feasibility problem which emerges from the MINLP model by fixing all integral variables. We offer novel sufficient conditions for proving the infeasibility of this active transmission problem. These conditions can be expressed in the form of a mixed-integer program (MILP), i.e., the infeasibility of a non-convex continuous nonlinear program (NLP) can be certified by solving an MILP. This result provides an efficient pruning procedure in a branch-and-bound algorithm. Our computational results demonstrate a substantial speedup for the necessary computations.