### Refine

#### Year of publication

#### Document Type

- ZIB-Report (15)
- In Proceedings (5)
- Article (4)
- Bachelor's Thesis (1)
- Master's Thesis (1)

#### Keywords

#### Institute

State-of-the-art solvers for mixed integer programs (MIP) govern a variety of algorithmic components. Ideally, the solver adaptively learns to concentrate its computational budget on those components that perform well on a particular problem, especially if they are time consuming.
We focus on three such algorithms, namely the classes of large neighborhood search and diving heuristics as well as Simplex pricing strategies.
For each class we propose a selection strategy that is updated based on the observed runtime behavior, aiming to ultimately select only the best algorithms for a given instance.
We review several common strategies for such a selection scenario under uncertainty, also known as Multi Armed Bandit Problem.
In order to apply those bandit strategies, we carefully design reward functions to rank and compare each individual heuristic or pricing algorithm within its respective class.
Finally, we discuss the computational benefits of using the proposed adaptive selection within the \scip Optimization Suite on publicly available MIP instances.

Shift-And-Propagate
(2013)

For mixed integer programming, recent years have seen a growing interest in the design of general purpose primal heuristics for use inside complete solvers. Many of these heuristics rely on an optimal LP solution. Finding this may itself take a significant amount of time.
The presented paper addresses this issue by the introduction of the Shift-And-Propagate heuristic. Shift-And-Propagate is a pre-root primal heuristic that does not require a previously found LP solution. It applies domain propagation techniques to quickly drive a variable assignment towards feasibility. Computational experiments indicate that this heuristic is a powerful supplement of existing rounding and propagation heuristics.

Modern MIP solvers employ dozens of auxiliary algorithmic components to support the branch-and-bound search in finding and improving primal solutions and in strengthening the dual bound.
Typically, all components are tuned to minimize the average running time to prove optimality. In this article, we take a different look at the run of a MIP solver. We argue that the solution process consists of three different phases, namely achieving feasibility, improving the incumbent solution, and proving optimality. We first show that the entire solving process can be improved by adapting the search strategy with respect to the phase-specific aims using different control tunings. Afterwards, we provide criteria to predict the transition between the individual phases and evaluate the performance impact of altering the algorithmic behavior of the MIP solver SCIP at the predicted phase transition points.

The selection of a good branching variable is crucial for small search trees in Mixed Integer Programming. Most modern solvers employ a strategy guided by history information, mainly the variable pseudo-costs, which are used to estimate the objective gain. At the beginning
of the search, such information is usually collected via an expensive look-ahead strategy called strong-branching until variables are considered reliable.
The reliability notion is thereby mostly based on fixed-number thresholds, which may lead to ineffective branching decisions on problems with highly varying objective gains.
We suggest two new notions of reliability motivated by mathematical statistics that take into account the sample variance of the past observations on each variable individually. The first method prioritizes additional strong-branching look-aheads on variables whose pseudo-costs
show a large variance by measuring the relative error of a pseudo-cost confidence interval. The second method performs a two-sample Student-t test for filtering branching candidates with a high probability to be better than the best history candidate.
Both methods were implemented in the MIP-solver SCIP and computational results on standard MIP test sets are presented.

We propose a simple and general online method to measure the search progress within the Branch-and-Bound algorithm, from which we estimate the size of the remaining search tree. We then show how this information can help solvers algorithmically at runtime by designing a restart strategy for Mixed-Integer Programming (MIP) solvers that decides whether to restart the search based on the current estimate of the number of remaining nodes in the tree. We refer to this type of algorithm as clairvoyant.
Our clairvoyant restart strategy outperforms a state-of-the-art solver on a large set of publicly available MIP benchmark instances.
It is implemented in the MIP solver SCIP and will be available in future releases.

Large Neighborhood Search (LNS) heuristics are among the most powerful but also most expensive heuristics for mixed integer programs (MIP). Ideally, a solver learns adaptively which LNS heuristics work best for the MIP problem at hand in order to concentrate its limited computational budget. To this end, this work introduces Adaptive Large Neighborhood Search (ALNS) for MIP, a primal heuristic that acts a framework for eight popular LNS heuristics such as Local Branching and Relaxation Induced Neighborhood Search (RINS). We distinguish the available LNS heuristics by their individual search domains, which we call neighborhoods. The decision which neighborhood should be executed is guided by selection strategies for the multi armed bandit problem, a related optimization problem during which suitable actions have to be chosen to maximize a reward function. In this paper, we propose an LNS-specific reward function to learn to distinguish between the available neighborhoods based on successful calls and failures. A second, algorithmic enhancement is a generic variable fixing priorization, which ALNS employs to adjust the subproblem complexity as needed. This is particularly useful for some neighborhoods which do not fix variables by themselves. The proposed primal heuristic has been implemented within the MIP solver SCIP. An extensive computational study is conducted to compare different LNS strategies within our ALNS framework on a large set of publicly available MIP instances from the MIPLIB and Coral benchmark sets. The results of this simulation are used to calibrate the parameters of the bandit selection strategies. A second computational experiment shows the computational benefits of the proposed ALNS framework within the MIP solver SCIP.

Mixed integer programming is a versatile and valuable optimization tool. However, solving specific problem instances can be computationally demanding even for cutting-edge solvers. Such long running times are often significantly reduced by an appropriate change of the solver's parameters. In this paper we investigate "algorithm selection", the task of choosing among a set of algorithms the ones that are likely to perform best for a particular instance.
In our case, we treat different parameter settings of the MIP solver SCIP as different algorithms to choose from. Two peculiarities of the MIP solving process have our special attention. We address the well-known problem of performance variability by using multiple random seeds. Besides solving time, primal dual integrals are recorded as a second performance measure in order to distinguish solvers that timed out.
We collected feature and performance data for a large set of publicly available MIP instances. The algorithm selection problem is addressed by several popular, feature-based methods, which have been partly extended for our purpose. Finally, an analysis of the feature space and performance results of the selected algorithms are presented.

State-of-the-art solvers for mixed integer programs (MIP) govern a variety of algorithmic components. Ideally, the solver adaptively learns to concentrate its computational budget on those components that perform well on a particular problem, especially if they are time consuming. We focus on three such algorithms, namely the classes of large neighborhood search and diving heuristics as well as Simplex pricing strategies. For each class we propose a selection strategy that is updated based on the observed runtime behavior, aiming to ultimately select only the best algorithms for a given instance. We review several common strategies for such a selection scenario under uncertainty, also known as Multi Armed Bandit Problem. In order to apply those bandit strategies, we carefully design reward functions to rank and compare each individual heuristic or pricing algorithm within its respective class. Finally, we discuss the computational benefits of using the proposed adaptive selection within the SCIP Optimization Suite on publicly available MIP instances.

Modern mixed-integer programming (MIP) solvers employ dozens of auxiliary algorithmic components to support the branch-and-bound search in finding and improving primal solutions and in strengthening the dual bound. Typically, all components are tuned to minimize the average running time to prove optimality. In this article, we take a different look at the run of a MIP solver. We argue that the solution process consists of three distinct phases, namely achieving feasibility, improving the incumbent solution, and proving optimality. We first show that the entire solving process can be improved by adapting the search strategy with respect to the phase-specific aims using different control tunings. Afterwards, we provide criteria to predict the transition between the individual phases and evaluate the performance impact of altering the algorithmic behaviour of the non-commercial MIP solver Scip at the predicted phase transition points.