### Refine

#### Year of publication

- 2011 (10) (remove)

#### Document Type

- ZIB-Report (6)
- In Proceedings (3)
- Article (1)

#### Language

- English (10)

#### Is part of the Bibliography

- no (10)

#### Keywords

#### Institute

The steel mill slab design problem from the CSPLIB is a combinatorial
optimization problem motivated by an application of the steel industry. It
has been widely studied in the constraint programming community. Several
methods were proposed to solve this problem. A steel mill slab library was
created which contains 380 instances. A closely related binpacking problem
called the multiple knapsack problem with color constraints, originated
from the same industrial problem, was discussed in the integer programming
community. In particular, a simple integer program for this problem has
been given by Forrest et al. The aim of this paper is to bring these
different studies together. Moreover, we adapt the model of Forrest et
al. for the steel mill slab design problem. Using this model and a
state-of-the-art integer program solver all instances of the steel mill
slab library can be solved efficiently to optimality. We improved,
thereby, the solution values of 76 instances compared to previous results.
Finally, we consider a recently introduced variant of the steel mill slab
design problem, where within all solutions which minimize the leftover one
is interested in a solution which requires a minimum number of slabs. For
that variant we introduce two approaches and solve all instances of the
steel mill slab library with this slightly changed objective function to
optimality.

Large neighborhood search (LNS) heuristics are an important component of modern branch-and-cut algorithms for solving mixed-integer linear programs (MIPs). Most of these LNS heuristics use the LP relaxation as the basis for their search, which is a reasonable choice in case of MIPs. However, for more general problem classes, the LP relaxation alone may not contain enough information about the original problem to find feasible solutions with these heuristics, e.g., if the problem is nonlinear or not all constraints are present in the current relaxation.
In this paper, we discuss a generic way to extend LNS heuristics that have been developed for MIP to constraint integer programming (CIP), which is a generalization of MIP in the direction of constraint programming (CP). We present computational results of LNS heuristics for three problem classes: mixed-integer quadratically constrained programs, nonlinear pseudo-Boolean optimization instances, and resource-constrained project scheduling problems. Therefore, we have implemented extended versions of the following LNS heuristics in the constraint integer programming framework SCIP: Local Branching, RINS, RENS, Crossover, and DINS. Our results indicate that a generic generalization of LNS heuristics to CIP considerably improves the success rate of these heuristics.

We provide a computational study of the performance of a state-of-the-art solver for nonconvex mixed-integer quadratically constrained programs (MIQCPs). Since successful general-purpose solvers for large problem classes necessarily comprise a variety of algorithmic techniques, we focus especially on the impact of the individual solver components. The solver SCIP used for the experiments implements a branch-and-cut algorithm based on linear outer approximation to solve MIQCPs to global optimality. Our analysis is based on a set of 86 publicly available test instances.

Energetic reasoning is one of the most powerful propagation algorithms in cumulative scheduling. In practice, however, it is not commonly used because it has a high running time and its success highly depends on the tightness of the variable bounds. In order to speed up energetic reasoning, we provide an easy-to-check necessary condition for energetic reasoning to detect infeasibilities.
We present an implementation of energetic reasoning that employs this condition and that can be parametrically adjusted to handle the trade-off between solving time and propagation overhead. Computational results on instances from the PSPLIB are provided. These results show that using this condition decreases the running time by more than a half, although more search nodes need to be explored.

In cumulative scheduling, conflict analysis seems to be one of the key ingredients to solve such problems efficiently. Thereby, the computational complexity of explanation algorithms plays an important role. Even more when we are faced with a backtracking system where explanations need to be constructed on the fly.
In this paper we present extensive computational results to analyze the impact of explanation algorithms for the cumulative constraint in a backward checking system. The considered explanation algorithms differ in their quality and computational complexity. We present results for the domain propagation algorithms time-tabling, edge-finding, and energetic reasoning.

Constraint Integer Programming (CIP) is a generalization of mixed-integer programming (MIP) in the direction of constraint programming (CP) allowing the inference techniques that have traditionally been the core of \P to be integrated with the problem solving techniques that form the core of complete MIP solvers. In this paper, we investigate the application of CIP to scheduling problems that require resource and start-time assignments to satisfy resource capacities. The best current approach to such problems is logic-based Benders decomposition, a manual decomposition method. We present a CIP model and demonstrate that it achieves performance competitive to the decomposition while out-performing the standard MIP and CP formulations.

MIPLIB 2010
(2011)