### Refine

#### Document Type

- Article (5)
- ZIB-Report (3)
- In Collection (1)

#### Language

- English (9)

#### Is part of the Bibliography

- no (9)

#### Keywords

- reaction coordinate (2)
- transfer operator (2)
- transition manifold (2)
- Galerkin method (1)
- coarse graining (1)
- data-driven (1)
- effective dynamics (1)
- embedding (1)
- meshfree basis (1)
- metastability (1)

We consider complex dynamical systems showing metastable behavior but no local separation of fast and slow time scales. The article raises the question of whether such systems exhibit a low-dimensional manifold supporting its effective dynamics. For answering this question, we aim at finding nonlinear coordinates, called reaction coordinates, such that the projection of the dynamics onto these coordinates preserves the dominant time scales of the dynamics. We show that, based on a specific reducibility property, the existence of good low-dimensional reaction coordinates preserving the dominant time scales is guaranteed. Based on this theoretical framework, we develop and test a novel numerical approach for computing good reaction coordinates. The proposed algorithmic approach is fully local and thus not prone to the curse of dimension with respect to the state space of the dynamics. Hence, it is a promising method for data-based model reduction of complex dynamical systems such as molecular dynamics.

The identification of meaningful reaction coordinates plays a key role in the study of complex molecular systems whose essential dynamics is characterized by rare or slow transition events. In a recent publication, the authors identified a condition under which such reaction coordinates exist - the existence of a so-called transition manifold - and proposed a numerical method for their point-wise computation that relies on short bursts of MD simulations. This article represents an extension of the method towards practical applicability in computational chemistry. It describes an alternative computational scheme that instead relies on more commonly available types of simulation data, such as single long molecular trajectories, or the push-forward of arbitrary canonically-distributed point clouds. It is based on a Galerkin approximation of the transition manifold reaction coordinates, that can be tuned to individual requirements by the choice of the Galerkin ansatz functions. Moreover, we propose a ready-to-implement variant of the new scheme, that computes data-fitted, mesh-free ansatz functions directly from the available simulation data. The efficacy of the new method is demonstrated
on a realistic peptide system.

We present a novel machine learning approach to understanding conformation dynamics of biomolecules. The approach combines kernel-based techniques that are popular in the machine learning community with transfer operator theory for analyzing dynamical systems in order to identify conformation dynamics based on molecular dynamics simulation data. We show that many of the prominent methods like Markov State Models, EDMD, and TICA can be regarded as special cases of this approach and that new efficient algorithms can be constructed based on this derivation. The results of these new powerful methods will be illustrated with several examples, in particular the alanine dipeptide and the protein NTL9.

Dimensionality Reduction of Complex Metastable Systems via Kernel Embeddings of Transition Manifolds
(2019)

Model reduction of large Markov chains is an essential step in a wide array of techniques for understanding complex systems and for efficiently learning structures from high-dimensional data. We present a novel aggregation algorithm for compressing such chains that exploits a specific low-rank structure in the transition matrix which, e.g., is present in metastable systems, among others. It enables the recovery of the aggregates from a vastly undersampled transition matrix which in practical applications may gain a speedup of several orders of mag- nitude over methods that require the full transition matrix. Moreover, we show that the new technique is robust under perturbation of the transition matrix. The practical applicability of the new method is demonstrated by identifying a reduced model for the large-scale traffic flow patterns from real-world taxi trip data.