### Refine

#### Year of publication

#### Document Type

- ZIB-Report (42)
- In Proceedings (22)
- Article (11)
- In Collection (4)
- Master's Thesis (2)
- Book chapter (1)
- Doctoral Thesis (1)

#### Keywords

#### Institute

In the recent years, a couple of quite successful large neighborhood search heuristics for mixed integer programs has been published. Up to our knowledge, all of them are improvement heuristics. We present a new start heuristic for general MIPs working in the spirit of large neighborhood search. It constructs a sub-MIP which represents the space of all feasible roundings of some fractional point - normally the optimum of the LP-relaxation of the original MIP. Thereby, one is able to determine whether a point can be rounded to a feasible solution and which is the best possible rounding. Furthermore, a slightly modified version of RENS proves to be a well-performing heuristic inside the branch-cut-and-price-framework SCIP.

Primal heuristics are an important component of state-of-the-art codes for
mixed integer programming. In this paper, we focus on primal heuristics
that only employ computationally inexpensive procedures such as rounding
and logical deductions (propagation). We give an overview of eight
different approaches. To assess the impact of these primal heuristics on
the ability to find feasible solutions, in particular early during search,
we introduce a new performance measure, the primal integral. Computational
experiments evaluate this and other measures on MIPLIB~2010 benchmark
instances.

MIPLIB 2010
(2010)

This paper reports on the fifth version of the Mixed Integer Programming Library.
The MIPLIB 2010 is the first MIPLIB release that has been assembled by a large group from academia and from industry, all of whom work in integer programming. There was mutual consent that the concept of the library had to be expanded in order to fulfill the needs of the community. The new version comprises 361 instances sorted into several groups.
This includes the main benchmark test set of 87 instances, which
are all solvable by today's codes, and also the challenge test set with 164 instances, many of which are currently unsolved.
For the first time, we include scripts to run automated tests in a predefined way. Further, there is a solution checker to
test the accuracy of provided solutions using exact arithmetic.

Large neighborhood search (LNS) heuristics are an important component of modern branch-and-cut algorithms for solving mixed-integer linear programs (MIPs). Most of these LNS heuristics use the LP relaxation as the basis for their search, which is a reasonable choice in case of MIPs. However, for more general problem classes, the LP relaxation alone may not contain enough information about the original problem to find feasible solutions with these heuristics, e.g., if the problem is nonlinear or not all constraints are present in the current relaxation.
In this paper, we discuss a generic way to extend LNS heuristics that have been developed for MIP to constraint integer programming (CIP), which is a generalization of MIP in the direction of constraint programming (CP). We present computational results of LNS heuristics for three problem classes: mixed-integer quadratically constrained programs, nonlinear pseudo-Boolean optimization instances, and resource-constrained project scheduling problems. Therefore, we have implemented extended versions of the following LNS heuristics in the constraint integer programming framework SCIP: Local Branching, RINS, RENS, Crossover, and DINS. Our results indicate that a generic generalization of LNS heuristics to CIP considerably improves the success rate of these heuristics.

Energetic reasoning is one of the most powerful propagation algorithms in cumulative scheduling. In practice, however, it is not commonly used because it has a high running time and its success highly depends on the tightness of the variable bounds. In order to speed up energetic reasoning, we provide an easy-to-check necessary condition for energetic reasoning to detect infeasibilities.
We present an implementation of energetic reasoning that employs this condition and that can be parametrically adjusted to handle the trade-off between solving time and propagation overhead. Computational results on instances from the PSPLIB are provided. These results show that using this condition decreases the running time by more than a half, although more search nodes need to be explored.

Mixed integer programming (MIP) has become one of the most important techniques in Operations Research and Discrete Optimization. SCIP (Solving Constraint Integer Programs) is currently one of the fastest non-commercial MIP solvers. It is based on the branch-and-bound procedure in which the problem is recursively split into smaller subproblems, thereby creating a so-called branching tree. We present ParaSCIP, an extension of SCIP, which realizes a parallelization on a distributed memory computing environment. ParaSCIP uses SCIP solvers as independently running processes to solve subproblems (nodes of the branching tree) locally. This makes the parallelization development independent of the SCIP development. Thus, ParaSCIP directly profits from any algorithmic progress in future versions of SCIP. Using a first implementation of ParaSCIP, we were able to solve two previously unsolved instances from MIPLIB2003, a standard test set library for MIP solvers. For these computations, we used up to 2048 cores of the HLRN~II supercomputer.

We provide a computational study of the performance of a state-of-the-art solver for nonconvex mixed-integer quadratically constrained programs (MIQCPs). Since successful general-purpose solvers for large problem classes necessarily comprise a variety of algorithmic techniques, we focus especially on the impact of the individual solver components. The solver SCIP used for the experiments implements a branch-and-cut algorithm based on linear outer approximation to solve MIQCPs to global optimality. Our analysis is based on a set of 86 publicly available test instances.

RENS – the optimal rounding
(2012)

This article introduces RENS, the relaxation enforced neighborhood search, a large neighborhood search algorithm for mixed integer nonlinear programming (MINLP) that uses a sub-MINLP to explore the set of feasible roundings of an optimal solution x' of a linear or nonlinear relaxation. The sub-MINLP is constructed by fixing integer variables x_j with x'_j in Z and bounding the remaining integer variables to x_j in {floor(x'_j), ceil(x'_j)}. We describe two different applications of RENS: as a standalone algorithm to compute an optimal rounding of the given starting solution and as a primal heuristic inside a complete MINLP solver.
We use the former to compare different kinds of relaxations and the impact of cutting planes on the roundability of the corresponding optimal solutions. We further utilize RENS to analyze the performance of three rounding heuristics implemented in the branch-cut-and-price framework SCIP. Finally, we study the impact of RENS when it is applied as a primal heuristic inside SCIP.
All experiments were performed on three publically available test sets of mixed integer linear programs (MIPs), mixed integer quadratically constrained programs (MIQCPs), and MINLPs, using solely software which is available in source code.
It turns out that for these problem classes 60% to 70% of the instances have roundable relaxation optima and that the success rate of RENS does not depend on the percentage of fractional variables. Last but not least, RENS applied as primal heuristic complements nicely with existing root node heuristics in SCIP and improves the overall performance.

We present Undercover, a primal heuristic for nonconvex mixed-integer nonlinear programming (MINLP) that explores a mixed-integer linear subproblem (sub-MIP) of a given MINLP. We solve a vertex covering problem to identify a minimal set of variables that need to be fixed in order to linearize each constraint, a so-called cover. Subsequently, these variables are fixed to values obtained from a reference point, e.g., an optimal solution of a linear relaxation. We apply domain propagation and conflict analysis to try to avoid infeasibilities and learn from them, respectively. Each feasible solution of the sub-MIP corresponds to a feasible solution of the original problem.
We present computational results on a test set of mixed-integer quadratically constrained programs (MIQCPs) and general MINLPs from MINLPLib. It turns out that the majority of these instances allow for small covers. Although general in nature, the heuristic appears most promising for MIQCPs, and complements nicely with existing root node heuristics in different state-of-the-art solvers.

We propose a hybrid approach for solving the resource-constrained project scheduling problem which is an extremely hard to solve combinatorial optimization problem of practical relevance. Jobs have to be scheduled on (renewable) resources subject to precedence constraints such that the resource capacities are never exceeded and the latest completion time of all jobs is minimized. The problem has challenged researchers from different communities, such as integer programming (IP), constraint programming (CP), and satisfiability testing (SAT). Still, there are instances with 60 jobs which have not been solved for many years. The currently best known approach, lazyFD, is a hybrid between CP and SAT techniques. In this paper we propose an even stronger hybridization by integrating all the three areas, IP, CP, and SAT, into a single branch-and-bound scheme. We show that lower bounds from the linear relaxation of the IP formulation and conflict analysis are key ingredients for pruning the search tree. First computational experiments show very promising results. For five instances of the well-known PSPLIB we report an improvement of lower bounds. Our implementation is generic, thus it can be potentially applied to similar problems as well.