Overview Statistic: PDF-Downloads (blue) and Frontdoor-Views (gray)
The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 27 of 31
Back to Result List

Convex reformulations for solving a nonlinear network design problem

  • We consider a nonlinear nonconvex network design problem that arises, for example, in natural gas or water transmission networks. Given is such a network with active and passive components, that is, valves, compressors, control valves (active) and pipelines (passive), and a desired amount of flow at certain specified entry and exit nodes in the network. The active elements are associated with costs when used. Besides flow conservation constraints in the nodes, the flow must fulfill nonlinear nonconvex pressure loss constraints on the arcs subject to potential values (i.e., pressure levels) in both end nodes of each arc. The problem is to compute a cost minimal setting of the active components and numerical values for the flow and node potentials. We examine different (convex) relaxations for a subproblem of the design problem and benefit from them within a branch-and-bound approach. We compare different approaches based on nonlinear optimization numerically on a set of test instances.

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics - number of accesses to the document
Metadaten
Author:Jesco Humpola, Armin Fügenschuh
Document Type:Article
Parent Title (English):Computational Optimization and Applications
Volume:62
Issue:3
First Page:717
Last Page:759
Publisher:Springer US
Year of first publication:2015
Preprint:urn:nbn:de:0297-zib-18857
DOI:https://doi.org/10.1007/s10589-015-9756-2
Accept ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.