## Online Multicommodity Routing with Time Windows

Please always quote using this URN: urn:nbn:de:0297-zib-9654

- We consider a multicommodity routing problem, where demands are released \emph{online} and have to be routed in a network during specified time windows. The objective is to minimize a time and load dependent convex cost function of the aggregate arc flow. First, we study the fractional routing variant. We present two online algorithms, called Seq and Seq$^2$. Our first main result states that, for cost functions defined by polynomial price functions with nonnegative coefficients and maximum degree~$d$, the competitive ratio of Seq and Seq$^2$ is at most $(d+1)^{d+1}$, which is tight. We also present lower bounds of $(0.265\,(d+1))^{d+1}$ for any online algorithm. In the case of a network with two nodes and parallel arcs, we prove a lower bound of $(2-\frac{1}{2} \sqrt{3})$ on the competitive ratio for Seq and Seq$^2$, even for affine linear price functions. Furthermore, we study resource augmentation, where the online algorithm has to route less demand than the offline adversary. Second, we consider unsplittable routings. For this setting, we present two online algorithms, called U-Seq and U-Seq$^2$. We prove that for polynomial price functions with nonnegative coefficients and maximum degree~$d$, the competitive ratio of U-Seq and U-Seq$^2$ is bounded by $O{1.77^d\,d^{d+1}}$. We present lower bounds of $(0.5307\,(d+1))^{d+1}$ for any online algorithm and $(d+1)^{d+1}$ for our algorithms. Third, we consider a special case of our framework: online load balancing in the $\ell_p$-norm. For the fractional and unsplittable variant of this problem, we show that our online algorithms are $p$ and $O{p}$ competitive, respectively. Such results where previously known only for scheduling jobs on restricted (un)related parallel machines.

Author: | Tobias Harks, Stefan Heinz, Marc E. Pfetsch, Tjark Vredeveld |
---|---|

Document Type: | ZIB-Report |

Tag: | Online Optimization; Routing; Telecommunications |

MSC-Classification: | 68-XX COMPUTER SCIENCE (For papers involving machine computations and programs in a specific mathematical area, see Section -04 in that area) / 68Wxx Algorithms (For numerical algorithms, see 65-XX; for combinatorics and graph theory, see 05C85, 68Rxx) / 68W40 Analysis of algorithms [See also 68Q25] |

90-XX OPERATIONS RESEARCH, MATHEMATICAL PROGRAMMING / 90Cxx Mathematical programming [See also 49Mxx, 65Kxx] / 90C25 Convex programming | |

Date of first Publication: | 2007/08/13 |

Series (Serial Number): | ZIB-Report (07-22) |

ISSN: | 1438-0064 |