Overview Statistic: PDF-Downloads (blue) and Frontdoor-Views (gray)

A multi-objective optimization strategy for district heating production portfolio planning.

accepted for publication
  • The imperative to decarbonize energy systems has intensified the need for efficient transformations within the heating sector, with a particular focus on district heating networks. This study addresses this challenge by proposing a comprehensive optimization approach evaluated on the district heating network of the Märkisches Viertel of Berlin. Our objective is to simultaneously optimize heat production with three targets: minimizing costs, minimizing CO2-emissions, and maximizing heat generation from Combined Heat and Power (CHP) plants for enhanced efficiency. To tackle this optimization problem, we employed a Mixed-Integer Linear Program (MILP) that encompasses the conversion of various fuels into heat and power, integration with relevant markets, and considerations for technical constraints on power plant operation. These constraints include startup and minimum downtime, activation costs, and storage limits. The ultimate goal is to delineate the Pareto front, representing the optimal trade-offs between the three targets. We evaluate variants of the 𝜖-constraint algorithm for their effectiveness in coordinating these objectives, with a simultaneous focus on the quality of the estimated Pareto front and computational efficiency. One algorithm explores solutions on an evenly spaced grid in the objective space, while another dynamically adjusts the grid based on identified solutions. Initial findings highlight the strengths and limitations of each algorithm, providing guidance on algorithm selection depending on desired outcomes and computational constraints. Our study emphasizes that the optimal choice of algorithm hinges on the density and distribution of solutions in the feasible space. Whether solutions are clustered or evenly distributed significantly influences algorithm performance. These insights contribute to a nuanced understanding of algorithm selection for multi-objective multi-energy system optimization, offering valuable guidance for future research and practical applications for planning sustainable district heating networks.
Metadaten
Author:Janina ZittelORCiD, Jan-Patrick Clarner, Christine Tawfik, Maxwell Dykes, Fabian Rivetta, Stephanie RiedmüllerORCiD
Document Type:In Proceedings
Parent Title (English):Proceedings of the 37th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems – ECOS 2024
Series:ECOS
Year of first publication:2024
Accept ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.