Overview Statistic: PDF-Downloads (blue) and Frontdoor-Views (gray)

Improving the Realism of Synthetic Cryogenic Electron Micrographs Using Generative Adversarial Networks

  • This thesis addresses the problem of synthetic-to-real image refinement applied to tilt series of cryogenic electron micrographs. It explores the possibility of improving the realism of synthesized micrographs using generative adversarial networks, which could help to improve the automatic segmentation of cellular structures based on deep learning methods. For image refinement, three image-to-image translation networks were used to transfer the appearance of real micrographs to synthetic micrographs while preserving their original content, including the location and shape of particles. The first model, called SimGAN, was unable to produce any meaningful refinement. Instead, the content of the synthetic micrographs was corrupted by the addition of extensive noise, making SimGAN unsuitable for the problem of this thesis. As a result, CycleGAN was introduced and its refinement of synthetic micrographs matches the appearance of real micrographs very well. However, structural changes in the position and shape of particles were observed after translation. To avoid this behavior, CUT was used as a third model on an exploratory basis but its performance was inferior to that of CycleGAN. In conclusion, CycleGAN proved to be the most promising image-to-image translation model for the images presented, although it does not solve the main problem of this thesis. In order to do so, further modifications, such as the addition of a structural constraint during translation, are required.

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics - number of accesses to the document
Author:Clea Peter
Document Type:Master's Thesis
Granting Institution:Freie Universität Berlin
Advisor:Daniel Baum
Date of final exam:2023/08/31
Year of first publication:2023
Accept ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.