Resilient Forecasting of High-Dimensional Network Time Series in the Energy Domain: A Hybrid Approach
accepted for publication
- Energy systems are complex networks consisting of various interconnected components. Accurate energy demand and supply forecasts are crucial for efficient system operation and decision-making. However, high-dimensional data, complex network structures, and dynamic changes and disruptions in energy networks pose significant challenges for forecasting models. To address this, we propose a hybrid approach for resilient forecasting of network time series (HRF-NTS) in the energy domain. Our approach combines mathematical optimization methods with state-of-the-art machine learning techniques to achieve accurate and robust forecasts for high-dimensional energy network time series. We incorporate an optimization framework to account for uncertainties and disruptive changes in the energy system. The effectiveness of the proposed approach is demonstrated through a case study of forecasting energy demand and supply in a complex, large-scale natural gas transmission network. The results show that the hybrid approach outperforms alternative prediction models in terms of accuracy and resilience to structural changes and disruptions, providing stable, multi-step ahead forecasts for different short to mid-term forecasting horizons.
Author: | Milena Petkovic, Janina Zittel |
---|---|
Document Type: | In Proceedings |
Parent Title (English): | Operations Research Proceedings 2023 |
Year of first publication: | 2023 |