Overview Statistic: PDF-Downloads (blue) and Frontdoor-Views (gray)

Time-domain observation of interlayer exciton formation and thermalization in a MoSe2/WSe2 heterostructure

  • Vertical heterostructures of transition metal dichalcogenides (TMDs) host interlayer excitons with electrons and holes residing in different layers. With respect to their intralayer counterparts, interlayer excitons feature longer lifetimes and diffusion lengths, paving the way for room temperature excitonic optoelectronic devices. The interlayer exciton formation process and its underlying physical mechanisms are largely unexplored. Here we use ultrafast transient absorption spectroscopy with a broadband white-light probe to simultaneously resolve interlayer charge transfer and interlayer exciton formation dynamics in a MoSe2/WSe2 heterostructure. We observe an interlayer exciton formation timescale nearly an order of magnitude (~1 ps) longer than the interlayer charge transfer time (~100 fs). Microscopic calculations attribute this relative delay to an interplay of a phonon-assisted interlayer exciton cascade and thermalization, and excitonic wave-function overlap. Our results may explain the efficient photocurrent generation observed in optoelectronic devices based on TMD heterostructures, as the interlayer excitons are able to dissociate during thermalization.

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics - number of accesses to the document
Metadaten
Author:Veronica R. Policht, Henry Mittenzwey, Oleg Dogadov, Manuel Katzer, Andrea Villa, Qiuyang Li, Benjamin KaiserORCiD, Aaron M. Ross, Francesco Scotognella, Xiaoyang Zhu, Andreas Knorr, Malte Selig, Giulio Cerullo, Stefano Dal Conte
Document Type:Article
Parent Title (English):Nature Communications
Volume:14
First Page:1
Last Page:9
Publisher:Springer Nature
Year of first publication:2023
DOI:https://doi.org/10.1038/s41467-023-42915-x
Licence (German):License LogoCreative Commons - CC BY - Namensnennung 4.0 International
Accept ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.