Overview Statistic: PDF-Downloads (blue) and Frontdoor-Views (gray)

Machine learning estimation of reaction energy barriers

  • We describe a machine learning approach to approximate reaction energy barriers (E), requiring as input only estimates of geometry and energies of reactants and products. Using the dataset of Grambow, Pattanaik, and Green [Sci. Data 7 (1 3 7) (2020)] for reactions involving seven or fewer non-hydrogen atoms, 300 reaction features are computed, and an estimate of E is obtained by fitting a Kernel Ridge Regression (KRR) model with Laplacian kernel to a subset of Density Functional Theory reaction barriers. Our main interest is small energy barriers with the goal of modeling reactions in the interstellar medium and circumstellar envelope. We omitted reactions with E > 40 kcal mol−1 to obtain a subset of 5,276 reactions for 5-fold cross-validation. For this set, the KRR model predicts E with a mean absolute error of 4.13 kcal mol−1 and a root-mean square error of 6.02 kcal mol−1.

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics - number of accesses to the document
Metadaten
Author:Hongchen Ji, Anita Ragyanszki, Rene A. Fournier
Document Type:Article
Parent Title (English):Computational and Theoretical Chemistry
Volume:1229
First Page:114332
Year of first publication:2023
DOI:https://doi.org/10.1016/j.comptc.2023.114332
Accept ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.