Overview Statistic: PDF-Downloads (blue) and Frontdoor-Views (gray)

Accelerated and Sparse Algorithms for Approximate Personalized PageRank and Beyond

  • It has recently been shown that ISTA, an unaccelerated optimization method, presents sparse updates for the ℓ1-regularized undirected personalized PageRank problem (Fountoulakis et al., 2019), leading to cheap iteration complexity and providing the same guarantees as the approximate personalized PageRank algorithm (APPR) (Andersen et al., 2006). In this work, we design an accelerated optimization algorithm for this problem that also performs sparse updates, providing an affirmative answer to the COLT 2022 open question of Fountoulakis and Yang (2022). Acceleration provides a reduced dependence on the condition number, while the dependence on the sparsity in our updates differs from the ISTA approach. Further, we design another algorithm by using conjugate directions to achieve an exact solution while exploiting sparsity. Both algorithms lead to faster convergence for certain parameter regimes. Our findings apply beyond PageRank and work for any quadratic objective whose Hessian is a positive-definite 푀-matrix.

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics - number of accesses to the document
Metadaten
Author:David Martínez-Rubio, Elias Wirth, Sebastian Pokutta
Document Type:In Proceedings
Parent Title (English):Proceedings of Machine Learning Research
Volume:195
First Page:1
Last Page:35
Year of first publication:2023
URL:https://proceedings.mlr.press/v195/martinez-rubio23a/martinez-rubio23a.pdf
Accept ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.