Overview Statistic: PDF-Downloads (blue) and Frontdoor-Views (gray)

Vision-based Context-awareness in Minimally Invasive Surgical Video Streams

  • Surgical interventions are becoming increasingly complex thanks to modern assistance systems (imaging, robotics, etc.). Minimally invasive surgery in particular places high demands on surgeons due to added surgical complexity and information overload. Therefore, there is a growing need of developing context-aware systems that recognize the current surgical situation in order to derive and present the relevant information to the surgical staff for assistance. Current approaches for deriving contextual cues either utilize specialized hardware that is disruptive to the surgical workflow, or utilize vision-based approaches that require valuable time of surgeons, especially for manual annotations. The main objective of this cumulative dissertation is to improve the existing approaches for three important sub-problems of vision-based context-aware systems, namely surgical phase recognition, surgical instrument recognition and surgical instrument segmentation, while tackling the vision and manual annotation challenges related to these problems. This dissertation demonstrates that vision-based approaches for the three named clinical sub-problems of context-aware systems can be developed in an annotation-scarce setting by employing: domain-specific, deep learning based transfer learning techniques for the surgical instrument and phase recognition tasks; and deep learning based simulation-to-real unsupervised domain adaptation techniques for the surgical instrument segmentation task. The efficacy and real-time performance of the developed approaches have been evaluated on publicly available datasets containing real surgical videos (laparoscopic procedures) that were acquired in an uncontrolled surgical environment. These proposed approaches advance the state-of-the-art for the aforementioned research problems of context-aware systems in the OR and can potentially be utilized for real-time notification of the surgical phase, surgical instrument usage and image-based localization of surgical instruments.

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics - number of accesses to the document
Author:Manish Sahu
Document Type:Doctoral Thesis
Granting Institution:Technische Universität Berlin
Advisor:Stefan Zachow, Anirban Mukhopadhyay
Date of final exam:2021/12/23
Year of first publication:2022
Page Number:103
Accept ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.