Overview Statistic: PDF-Downloads (blue) and Frontdoor-Views (gray)

Vertex Covering with Capacitated Trees

  • The covering of a graph with (possibly disjoint) connected subgraphs is a funda-mental problem in graph theory. In this paper, we study a version to cover a graph’svertices by connected subgraphs subject to lower and upper weight bounds, and pro-pose a column generation approach to dynamically generate feasible and promisingsubgraphs. Our focus is on the solution of the pricing problem which turns out to bea variant of the NP-hard Maximum Weight Connected Subgraph Problem. We com-pare different formulations to handle connectivity, and find that a single-commodityflow formulation performs best. This is notable since the respective literature seemsto have widely dismissed this formulation. We improve it to a new coarse-to-fine flowformulation that is theoretically and computationally superior, especially for largeinstances with many vertices of degree 2 like highway networks, where it provides aspeed-up factor of 5 over the non-flow-based formulations. We also propose a pre-processing method that exploits a median property of weight-constrained subgraphs,a primal heuristic, and a local search heuristic. In an extensive computational studywe evaluate the presented connectivity formulations on different classes of instances,and demonstrate the effectiveness of the proposed enhancements. Their speed-upsessentially multiply to an overall factor of well over 10. Overall, our approach allowsthe reliable solution of instances with several hundreds of vertices in a few min-utes. These findings are further corroborated in a comparison to existing districtingmodels on a set of test instances from the literature

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics - number of accesses to the document
Author:Ralf BorndörferORCiD, Stephan Schwartz, William Surau
Document Type:Article
Parent Title (English):Networks
First Page:253
Last Page:277
Year of first publication:2023
Accept ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.