Overview Statistic: PDF-Downloads (blue) and Frontdoor-Views (gray)

Data-driven modelling of nonlinear dynamics by barycentric coordinates and memory

under review
  • We present a numerical method to model dynamical systems from data. We use the recently introduced method Scalable Probabilistic Approximation (SPA) to project points from a Euclidean space to convex polytopes and represent these projected states of a system in new, lower-dimensional coordinates denoting their position in the polytope. We then introduce a specific nonlinear transformation to construct a model of the dynamics in the polytope and to transform back into the original state space. To overcome the potential loss of information from the projection to a lower-dimensional polytope, we use memory in the sense of the delay-embedding theorem of Takens. By construction, our method produces stable models. We illustrate the capacity of the method to reproduce even chaotic dynamics and attractors with multiple connected components on various examples.

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics - number of accesses to the document
Author:Niklas Wulkow, Péter Koltai, Vikram Sunkara, Christof Schütte
Document Type:Article
Parent Title (English):J. Stat. Phys.
Date of first Publication:2021/12/13
ArXiv Id:http://arxiv.org/abs/2112.06742
Accept ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.