Overview Statistic: PDF-Downloads (blue) and Frontdoor-Views (gray)

Rolling Stock Rotation Optimization with Maintenance Paths

  • Die Planung vom Zugumläufen ist eine der wichtigsten Aufgaben für Eisenbahnun- ternehmen. Dabei spielt auch die Einhaltung von vorgegebenen Wartungsintervallen eine zentrale Rolle für die Sicherheit und Zuverlässigkeit der Schienenfahrzeuge. Wir zeigen, wie man dieses Umlaufplanungsproblem unter Beachtung von Wartungsbe- dingungen mathematisch formuliert, modelliert und löst — sowohl in der Theorie als auch im Anwendungsfall mit Szenarien der DB Fernverkehr AG, einer Konzern- tochter der Deutschen Bahn für den Schienenpersonenfernverkehr. Markus Reuther hat sich in seiner Dissertation [11] mit diesem Problem beschäftigt und es mit Hilfe eines passenden Hypergraphen als gemischt-ganzzahliges Programm modelliert. Neben der Modellierung präsentiert Reuther in seiner Arbeit neuartige algorithmische Ideen, darunter den sogenannten Coarse-to-Fine -Ansatz, bei dem zunächst Teile des Problems auf einer weniger detaillierten ( coarse ) Ebene gelöst werden und diese Lösung dann verwendet wird, um auf effiziente Art und Weise eine Lösung für das ursprüngliche Problem zu finden. Zur Wartungsplanung nutzt Reuther einen Fluss im Hypergraphen, der den Ressourcenverbrauch der Fahrzeuge modelliert. In der linearen Relaxierung des Modells führt dies dazu, dass die Zahl der notwendigen Wartungen systematisch unterschätzt wird. Dadurch bleibt in vielen Fällen eine große Lücke zwischen dem Zielfunktionswert einer optimalen Lösung des ganzzahligen Problems und der untere Schranke, die uns die lineare Relaxierung liefert. Wir nehmen uns in dieser Arbeit dieses Problems an. Wir entwickeln ein auf Pfaden basierendes ganzzahliges Modell für das Umlaufplanungsproblem und zeigen, dass die untere Schranke mindestens so scharf oder schärfer ist als die untere Schranke, die das Modell von Reuther liefert. Um das Modell zu lösen, entwickeln wir einen Algorithmus, der Spaltengenerierung mit dem Coarse-to-Fine-Ansatz von Reuther verbindet. Weiterhin entwickeln wir eine Spaltenauswahlregel zur Beschleunigung des Algorithmus. Das Modell und alle in der Arbeit vorgestellten Algorithmen wur- den im Rahmen der Arbeit implementiert und mit Anwendungsszenarien der DB Fernverkehr AG getestet. Unsere Tests zeigen, dass unser Modell für fast alle Szena- rien deutlich schärfere untere Schranken liefert als das Modell von Reuther. In den getesteten Instanzen konnten wir durch die Verbesserung der unteren Schranke bis zu 99% der Optimalitätslücke schließen. In einem Drittel der Fälle konnten wir durch unseren Ansatz auch für das ganzzahlige Programm verbesserte Zielfunktionswerte erreichen

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics - number of accesses to the document
Metadaten
Author:Julian Bushe
Document Type:Master's Thesis
MSC-Classification:90-XX OPERATIONS RESEARCH, MATHEMATICAL PROGRAMMING
CCS-Classification:J. Computer Applications
Granting Institution:Technische Universität Berlin
Advisor:Thorsten Koch, Ralf Borndörfer, Boris Grimm, Stanley Schade
Year of first publication:2021
Accept ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.