Overview Statistic: PDF-Downloads (blue) and Frontdoor-Views (gray)

Linear Bandits on Uniformly Convex Sets

  • Linear bandit algorithms yield O~(n√T) pseudo-regret bounds on compact convex action sets K⊂Rn and two types of structural assumptions lead to better pseudo-regret bounds. When K is the simplex or an ℓp ball with p∈]1,2], there exist bandits algorithms with O~(√n√T) pseudo-regret bounds. Here, we derive bandit algorithms for some strongly convex sets beyond ℓp balls that enjoy pseudo-regret bounds of O~(√n√T), which answers an open question from [BCB12, §5.5.]. Interestingly, when the action set is uniformly convex but not necessarily strongly convex, we obtain pseudo-regret bounds with a dimension dependency smaller than O(√n). However, this comes at the expense of asymptotic rates in T varying between O(√T) and O(T).

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics - number of accesses to the document
Metadaten
Author:Thomas Kerdreux, Christophe Roux, Alexandre d'Aspremont, Sebastian Pokutta
Document Type:Article
Parent Title (English):Journal of Machine Learning Research
Volume:22
Issue:284
First Page:1
Last Page:23
Year of first publication:2021
URL:https://www.jmlr.org/papers/v22/21-0277.html
Accept ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.