Overview Statistic: PDF-Downloads (blue) and Frontdoor-Views (gray)

Efficient Online-Bandit Strategies for Minimax Learning Problems

  • Several learning problems involve solving min-max problems, e.g., empirical distributional robust learning [Namkoong and Duchi, 2016, Curi et al., 2020] or learning with non-standard aggregated losses [Shalev- Shwartz and Wexler, 2016, Fan et al., 2017]. More specifically, these problems are convex-linear problems where the minimization is carried out over the model parameters w ∈ W and the maximization over the empirical distribution p ∈ K of the training set indexes, where K is the simplex or a subset of it. To design efficient methods, we let an online learning algorithm play against a (combinatorial) bandit algorithm. We argue that the efficiency of such approaches critically depends on the structure of K and propose two properties of K that facilitate designing efficient algorithms. We focus on a specific family of sets Sn,k encompassing various learning applications and provide high-probability convergence guarantees to the minimax values.

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics - number of accesses to the document
Author:Christophe Roux, Sebastian Pokutta, Elias Wirth, Thomas Kerdreux
Document Type:Article
Year of first publication:2021
Accept ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.