Overview Statistic: PDF-Downloads (blue) and Frontdoor-Views (gray)

Second-order Conditional Gradient Sliding

  • Constrained second-order convex optimization algorithms are the method of choice when a high accuracy solution to a problem is needed, due to their local quadratic convergence. These algorithms require the solution of a constrained quadratic subproblem at every iteration. We present the \emph{Second-Order Conditional Gradient Sliding} (SOCGS) algorithm, which uses a projection-free algorithm to solve the constrained quadratic subproblems inexactly. When the feasible region is a polytope the algorithm converges quadratically in primal gap after a finite number of linearly convergent iterations. Once in the quadratic regime the SOCGS algorithm requires O(log(log1/ε)) first-order and Hessian oracle calls and O(log(1/ε)log(log1/ε)) linear minimization oracle calls to achieve an ε-optimal solution. This algorithm is useful when the feasible region can only be accessed efficiently through a linear optimization oracle, and computing first-order information of the function, although possible, is costly.
Author:Alejandro Carderera, Sebastian Pokutta
Document Type:Article
Year of first publication:2020
Accept ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.