Experiments with nonlinear extensions to SCIP

Please always quote using this URN: urn:nbn:de:0297-zib-8300
  • This paper describes several experiments to explore the options for solving a class of mixed integer nonlinear programming problems that stem from a real-world mine production planning project. The only type of nonlinear constraints in these problems are bilinear equalities involving continuous variables, which enforce the ratios between elements in mixed material streams. A branch-and-bound algorithm to handle the integer variables has been tried in another project. However, this branch-and-bound algorithm is not effective for handling the nonlinear constraints. Therefore state-of-the-art nonlinear solvers are utilized to solve the resulting nonlinear subproblems in this work. The experiments were carried out using the NEOS server for optimization. After finding that current nonlinear programming solvers seem to lack suitable preprocessing capabilities, we preprocess the instances beforehand and use an heuristic approach to solve the nonlinear subproblems. In the appendix, we explain how to add a polynomial constraint handler that uses IPOPT as embedded nonlinear programming solver for the constraint programming framework SCIP. This is one of the crucial steps for implementing our algorithm in SCIP. We briefly described our approach and give an idea of the work involved.

Download full text files

Export metadata

  • Export Bibtex

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Andreas Bley, Thorsten Koch, Lingfeng Niu
Document Type:ZIB-Report
MSC-Classification:90-XX OPERATIONS RESEARCH, MATHEMATICAL PROGRAMMING / 90Cxx Mathematical programming [See also 49Mxx, 65Kxx] / 90C11 Mixed integer programming
90-XX OPERATIONS RESEARCH, MATHEMATICAL PROGRAMMING / 90Cxx Mathematical programming [See also 49Mxx, 65Kxx] / 90C30 Nonlinear programming
Date of first Publication:2008/07/29
Series (Serial Number):ZIB-Report (08-28)
ISSN:1438-0064

$Rev: 13581 $