Matchings and Flows in Hypergraphs

  • In this dissertation, we study matchings and flows in hypergraphs using combinatorial methods. These two problems are among the best studied in the field of combinatorial optimization. As hypergraphs are a very general concept, not many results on graphs can be generalized to arbitrary hypergraphs. Therefore, we consider special classes of hypergraphs, which admit more structure, to transfer results from graph theory to hypergraph theory. In Chapter 2, we investigate the perfect matching problem on different classes of hypergraphs generalizing bipartite graphs. First, we give a polynomial time approximation algorithm for the maximum weight matching problem on so-called partitioned hypergraphs, whose approximation factor is best possible up to a constant. Afterwards, we look at the theorems of König and Hall and their relation. Our main result is a condition for the existence of perfect matchings in normal hypergraphs that generalizes Hall’s condition for bipartite graphs. In Chapter 3, we consider perfect f-matchings, f-factors, and (g,f)-matchings. We prove conditions for the existence of (g,f)-matchings in unimodular hypergraphs, perfect f-matchings in uniform Mengerian hypergraphs, and f-factors in uniform balanced hypergraphs. In addition, we give an overview about the complexity of the (g,f)-matching problem on different classes of hypergraphs generalizing bipartite graphs. In Chapter 4, we study the structure of hypergraphs that admit a perfect matching. We show that these hypergraphs can be decomposed along special cuts. For graphs it is known that the resulting decomposition is unique, which does not hold for hypergraphs in general. However, we prove the uniqueness of this decomposition (up to parallel hyperedges) for uniform hypergraphs. In Chapter 5, we investigate flows on directed hypergraphs, where we focus on graph-based directed hypergraphs, which means that every hyperarc is the union of a set of pairwise disjoint ordinary arcs. We define a residual network, which can be used to decide whether a given flow is optimal or not. Our main result in this chapter is an algorithm that computes a minimum cost flow on a graph-based directed hypergraph. This algorithm is a generalization of the network simplex algorithm.
  • Diese Arbeit untersucht Matchings und Flüsse in Hypergraphen mit Hilfe kombinatorischer Methoden. In Graphen gehören diese Probleme zu den grundlegendsten der kombinatorischen Optimierung. Viele Resultate lassen sich nicht von Graphen auf Hypergraphen verallgemeinern, da Hypergraphen ein sehr abstraktes Konzept bilden. Daher schauen wir uns bestimmte Klassen von Hypergraphen an, die mehr Struktur besitzen, und nutzen diese aus um Resultate aus der Graphentheorie zu übertragen. In Kapitel 2 betrachten wir das perfekte Matchingproblem auf Klassen von „bipartiten“ Hypergraphen, wobei es verschiedene Möglichkeiten gibt den Begriff „bipartit“ auf Hypergraphen zu definieren. Für sogenannte partitionierte Hypergraphen geben wir einen polynomiellen Approximationsalgorithmus an, dessen Gütegarantie bis auf eine Konstante bestmöglich ist. Danach betrachten wir die Sätze von Konig und Hall und untersuchen deren Zusammenhang. Unser Hauptresultat ist eine Bedingung für die Existenz von perfekten Matchings auf normalen Hypergraphen, die Halls Bedingung für bipartite Graphen verallgemeinert. Als Verallgemeinerung von perfekten Matchings betrachten wir in Kapitel 3 perfekte f-Matchings, f-Faktoren und (g, f)-Matchings. Wir beweisen Bedingungen für die Existenz von (g, f)-Matchings auf unimodularen Hypergraphen, perfekten f-Matchings auf uniformen Mengerschen Hypergraphen und f-Faktoren auf uniformen balancierten Hypergraphen. Außerdem geben wir eine Übersicht über die Komplexität des (g, f)-Matchingproblems auf verschiedenen Klassen von Hypergraphen an, die bipartite Graphen verallgemeinern. In Kapitel 4 untersuchen wir die Struktur von Hypergraphen, die ein perfektes Matching besitzen. Wir zeigen, dass diese Hypergraphen entlang spezieller Schnitte zerlegt werden können. Für Graphen weiß man, dass die so erhaltene Zerlegung eindeutig ist, was im Allgemeinen für Hypergraphen nicht zutrifft. Wenn man jedoch uniforme Hypergraphen betrachtet, dann liefert jede Zerlegung die gleichen unzerlegbaren Hypergraphen bis auf parallele Hyperkanten. Kapitel 5 beschäftigt sich mit Flüssen in gerichteten Hypergraphen, wobei wir Hypergraphen betrachten, die auf gerichteten Graphen basieren. Das bedeutet, dass eine Hyperkante die Vereinigung einer Menge von disjunkten Kanten ist. Wir definieren ein Residualnetzwerk, mit dessen Hilfe man entscheiden kann, ob ein gegebener Fluss optimal ist. Unser Hauptresultat in diesem Kapitel ist ein Algorithmus, um einen Fluss minimaler Kosten zu finden, der den Netzwerksimplex verallgemeinert.

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Isabel Beckenbach
Document Type:Doctoral Thesis
Tag:Balanced Hypergraphs; Factors; Matchings; Mengerian Hypergraphs; Network Flows; Normal Hypergraphs; Tight Cuts
MSC-Classification:05-XX COMBINATORICS (For finite fields, see 11Txx)
90-XX OPERATIONS RESEARCH, MATHEMATICAL PROGRAMMING
Granting Institution:Freie Universität Berlin
Advisor:Ralf Borndörfer, Winfried Hochstättler
Date of final exam:2019/03/22
Year of first publication:2019
URL:http://nbn-resolving.de/urn:nbn:de:kobv:188-refubium-24385-6