Possibilities and Limitations of Automatic Feature Extraction shown by the Example of Crack Detection in 3D-CT Images of Concrete Specimen
in press
- To assess the influence of the alkali-silica reaction (ASR) on pavement concrete 3D-CT imaging has been applied to concrete samples. Prior to imaging these samples have been drilled out of a concrete beam pre-damaged by fatigue loading. The resulting high resolution 3D-CT images consist of several gigabytes of voxels. Current desktop computers can visualize such big datasets without problems but a visual inspection or manual segmentation of features such as cracks by experts can only be carried out on a few slices. A quantitative analysis of cracks requires a segmentation of the whole specimen which could only be done by an automatic feature detection. This arises the question of the reliability of an automatic crack detection algorithm, its certainty and limitations. Does the algorithm find all cracks? Does it find too many cracks? Can parameters of that algorithm, once identified as good, be applied to other samples as well? Can ensemble computing with many crack parameters overcome the difficulties with parameter finding? By means of a crack detection algorithm based on shape recognition (template matching) these questions will be discussed. Since the author has no access to reliable ground truth data of cracks the assessment of the certainty of the automatic crack is restricted to visual inspection by experts. Therefore, an artificial dataset based on a combination of manually segmented cracks processed together with simple image processing algorithms is used to quantify the accuracy of the crack detection algorithm. Part of the evaluation of cracks in concrete samples is the knowledge of the surrounding material. The surrounding material can be used to assess the detected cracks, e.g. micro-cracks within the aggregate-matrix interface may be starting points for cracks on a macro scale. Furthermore, the knowledge of the surrounding material can help to find better parameter sets for the crack detection itself because crack characteristics may vary depending on their surrounding material. Therefore, in addition to a crack detection a complete segmentation of the sample into the components of concrete, such as aggregates, cement matrix and pores is needed. Since such a segmentation task cannot be done manually due to the amount of data, an approach utilizing convolutional neuronal networks stemming from a medical application has been applied. The learning phase requires a ground truth i.e. a segmentation of the components. This has to be created manually in a time-consuming task. However, this segmentation can be used for a quantitative evaluation of the automatic segmentation afterwards. Even though that work has been performed as a short term subtask of a bigger project funded by the German Research Foundation (DFG) this paper discusses problems which may arise in similar projects, too. [1.2MB | id=23664 ] iCT 2019 Session: Short talks Thu 13:50 Auditorium 2019-03 Möglichkeiten und Grenzen automatischer Merkmalserkennung am Beispiel von Risserkennungen in 3D-CT-Aufnahmen von Betonproben O. Paetsch11 Visualisation and Data Analysis; Konrad-Zuse-Institut Berlin (ZIB)18, Berlin, Germany Abstract [1MB | id=23104 ] DE DGZfP 2018 Session: Bauwesen 2018-09 Quantitative Rissanalyse im Fahrbahndeckenbeton mit der 3D-Computertomographie D. Meinel125, K. Ehrig128, F. Weise16, O. Paetsch211 1Division 8.5; BAM Federal Institute for Materials Research and Testing1277, Berlin, Germany 2Visualisation and Data Analysis; Konrad-Zuse-Institut Berlin (ZIB)18, Berlin, Germany concrete, ROI tomography, in-situ-CT, 3D-CT, Beton, AKR, Feuchtetransport, automatic crack detection Abstract [0.7MB | id=18980 ] DE DGZfP 2015 Session: CT Algorithmen 2016-04 3D Corrosion Detection in Time-dependent CT Images of Concrete O. Paetsch111, D. Baum15, S. Prohaska17, K. Ehrig228, D. Meinel225, G. Ebell24 1Visualisation and Data Analysis; Konrad-Zuse-Institut Berlin (ZIB)18, Berlin, Germany 2Division 8.5; BAM Federal Institute for Materials Research and Testing1277, Berlin, Germany CT, multi-angle radiography, defect detection, Feature Extraction, image processing, concrete, corrosion Abstract [0.5MB | id=18043 ] DIR 2015 Session: Quantitative imaging and image processing 2015-08 Korrosionsverfolgung in 3D-computertomographischen Aufnahmen von Stahlbetonproben O. Paetsch111, D. Baum15, G. Ebell24, K. Ehrig228, A. Heyn2, D. Meinel225, S. Prohaska17 1Konrad-Zuse-Institut Berlin (ZIB)18, Berlin, Germany 2Division VIII.3; BAM Federal Institute for Materials Research and Testing1277, Berlin, Germany Computertomographie [0.4MB | id=17375 ] DE DGZfP 2014 Session: Bauwesen 2015-03 Examination of Damage Processes in Concrete with CT D. Meinel125, K. Ehrig128, V. L’Hostis2, B. Muzeau2, O. Paetsch311 1BAM Federal Institute for Materials Research and Testing1277, Berlin, Germany 2Laboratoire d’Etude du Comportement des Bétons et des Argiles; Commissariat Energie Atomique (CEA)287, Gif-Sur-Yvette, France 3Konrad-Zuse-Institut Berlin (ZIB)18, Berlin, Germany X-ray computed tomography, concrete, corrosion, crack detection, 3D visualization Abstract [4.9MB | id=15692 ] iCT 2014 Session: Non-destructive Testing and 3D Materials Characterisation of... 2014-06 3-D-Visualisierung und statistische Analyse von Rissen in mit Computer-Tomographie untersuchten Betonproben O. Paetsch111, D. Baum15, D. Breßler1, K. Ehrig228, D. Meinel225, S. Prohaska1,17 1Konrad-Zuse-Institut Berlin (ZIB)18, Berlin, Germany 2Division VIII.3; BAM Federal Institute for Materials Research and Testing1277, Berlin, Germany Radiographic Testing (RT), statistical analysis, 3D Computed Tomography, visualization, concrete structural damage, automated crack detection [1MB | id=15343 ] DE DGZfP 2013 Session: Computertomographie 2014-03 Vergleich automatischer 3D-Risserkennungsmethoden für die quantitative Analyse der Schadensentwicklung in Betonproben mit Computertomographie O. Paetsch111, K. Ehrig228, D. Meinel225, D. Baum15, S. Prohaska1,1,17 1Konrad-Zuse-Institut Berlin (ZIB)18, Berlin, Germany 2Division VIII.3; BAM Federal Institute for Materials Research and Testing1277, Berlin, Germany Radiographic Testing (RT), visualization, crack detection, Visualisierung, computer tomography, template matching, Hessian eigenvalues, ZIBAmira, automated crack detection, percolation [0.9MB | id=14269 ] DE DGZfP 2012 Session: Computertomographie 2013-05 Automated 3D Crack Detection for Analyzing Damage Processes in Concrete with Computed Tomography O. Paetsch111, D. Baum15, K. Ehrig228, D. Meinel225, S. Prohaska1,1,17 1Konrad-Zuse-Institut Berlin (ZIB)18, Berlin, Germany 2Division VIII.3; BAM Federal Institute for Materials Research and Testing1277, Berlin, Germany computed tomography, template matching, Hessian eigenvalues, crack statistics, visualization, crack surface, ZIBAmira [0.6MB | id=13736 ] iCT 2012 Session: Poster - Analysis and Algorithms 2012-12 3-D-Visualisierung von Radar- und Ultraschallecho-Daten mit ZIBAmira D. Streicher112, O. Paetsch211, R. Seiler2, S. Prohaska27, M. Krause360 [Profile of Krause] , C. Boller178 1Saarland University74, Saarbrücken, Germany 2Konrad-Zuse-Institut Berlin (ZIB)18, Berlin, Germany 3BAM Federal Institute for Materials Research and Testing1277, Berlin, Germany [0.4MB | id=12284 ] DE DGZfP 2011 Session: Bauwesen 2012-05 Comparison of Crack Detection Methods for Analyzing Damage Processes in Concrete with Computed Tomography K. Ehrig128, J. Goebbels153, D. Meinel125, O. Paetsch211, S. Prohaska27, V. Zobel2 1Division VIII.3; BAM Federal Institute for Materials Research and Testing1277, Berlin, Germany 2Konrad-Zuse-Institut Berlin (ZIB)18, Berlin, Germany [0.7MB | id=11150 ] DIR 2011 Session: Poster 2011-11 Actual Cooperations 10th International Workshop NDT in Progress 2019 2019 Oct 7-9 11th International Symposium on NDT in Aerospace 2019 2019 Nov 13-15 3rd Singapore International NDT Conference & Exhibition, SINCE 2019 2019 Dec 4-5 10th Conference on Industrial Computed Tomography (iCT) 2020 2020 Feb 4-7 34th European Conference on Acoustic Emission Testing (EWGAE 2020) 2020 Sep 9-11 Contribute Papers and Proceedings to NDT.net Share... Home Exhibition Archive Forum Jobs Members Events Directory NDT A-Z Advertise Privacy Policy Contact About © NDT.net - Where expertise comes together. The Largest Open Access Portal of Nondestructive Testing (NDT)- since 1996
Author: | Olaf PaetschGND |
---|---|
Document Type: | In Proceedings |
Parent Title (English): | iCT 2019 |
Series: | iCT 2019 Conference Proceedings |
Year of first publication: | 2019 |