Overview Statistic: PDF-Downloads (blue) and Frontdoor-Views (gray)

Alternativen zum Dijkstra Algorithmus in der (Nah-) Verkehrsoptimierung

  • In dieser Arbeit betrachten wir das Problem, für den Fahrplan eines (Nah-) Verkehrsnetzes schnellste Wege zu berechnen. Da die Verkehrsmittel zu unterschiedlichen Zeiten von den einzelnen Haltestellen/Bahnhöfen abfahren, kann das Problem nicht ohne Weiteres mit einem „statischen“ Graphen modelliert werden. Es gibt zwei unterschiedliche Ansätze für dieses zeitabhängige Problem: Erstens können die verschiedenen An-/Abfahrtereignisse an einem Halt durch „Kopien“ dargestellt werden, das ist das zeit-expandierte Modell. Zweitens können die Gewichte der Kanten zeitabhängig sein, das ist das zeitabhängige Modell. Wir untersuchen in dieser Arbeit, wie der „klassische“ Dijkstra-Algorithmus und der A* Algorithmus mit einer geeigneten Heuristik im Vergleich abschneiden. Die gewählte Heuristik ist der Abstand zum Zielknoten, wenn die Abfahrtszeiten ignoriert werden. Nach unseren Untersuchungen zeigt sich, dass der A* Algorithmus dem Dijkstra-Algorithmus weit überlegen ist für genügend große Nahverkehrsnetze. Wir testen anhand der echten Verkehrsnetze von Berlin und Aachen. Unsere Berechnungen zeigen, dass die gewählte Heuristik besonders gut ist für Start- und Zielknoten, welche unabhängig von ihrer Distanz nur 1–2 verschiedene mögliche kürzeste Pfade für alle Zeitschritte haben. Dort ist der A* Algorithmus bis zu 20-mal schneller. Dies kommt aber nicht häufig in unseren Testinstanzen vor. Die einzelnen Laufzeitvergleich zeigen, dass der A* Algorithmus durchschnittlich 7-mal so schnell ist wie der Dikstra-Algorithmus.

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics - number of accesses to the document
Metadaten
Author:Björn-Marcel Jeschke
Document Type:Master's Thesis
MSC-Classification:90-XX OPERATIONS RESEARCH, MATHEMATICAL PROGRAMMING
Granting Institution:Freie Universität Berlin
Advisor:Ralf Borndörfer
Year of first publication:2017
Page Number:74
Accept ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.