The Rolling Stock Rotation Planning Problem under Revenue Considerations

  • In many railway undertakings a railway timetable is offered that is valid for a longer period of time. At DB Fernverkehr AG, one of our industrial partners, this results in a summer and a winter timetable. For both of these timetables rotation plans, i.e., a detailed plan of railway vehicle movements is constructed as a template for this period. Sometimes there are be periods where you know for sure that vehicle capacities are not sufficient to cover all trips of the timetable or to transport all passenger of the trips. Reasons for that could be a heavy increase of passenger flow, a heavy decrease of vehicle availability, impacts from nature, or even strikes of some employees. In such events the rolling stock rotations have to be adapted. Optimization methods are particularly valuable in such situations in order to maintain a best possible level of service or to maximize the expected revenue using the resources that are still available. In most cases found in the literature, a rescheduling based on a timetable update is done, followed by the construction of new rotations that reward the recovery of parts of the obsolete rotations. We consider a different, novel, and more integrated approach. The idea is to guide the cancellation of the trips or reconfiguration of the vehicle composition used to operate a trip of the timetable by the rotation planning process, which is based on the mixed integer programming approach presented in Reuther (2017). The goal is to minimize the operating costs while cancelling or operating a trip with an insufficient vehicle configuration in sense of passenger capacities inflicts opportunity costs and loss of revenue, which are based on an estimation of the expected number of passengers. The performance of the algorithms presented in two case studies, including real world scenarios from DB Fernverkehr AG and a railway operator in North America.

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Boris Grimm, Ralf Borndörfer, Christof Schulz, Steffen Weider
Document Type:In Proceedings
Parent Title (English):Proceedings of the Rail Transport Demand Management Conference
Year of first publication:2018
Preprint:urn:nbn:de:0297-zib-71339