A Propagation Approach to Acyclic Rolling Stock Rotation Optimization
- The rolling stock, i.e., railway vehicles, are one of the key ingredients of a running railway system. As it is well known, the offer of a railway company to their customers, i.e., the railway timetable, changes from time to time. Typical reasons for that are different timetables associated with different seasons, maintenance periods or holidays. Therefore, the regular lifetime of a timetable is split into (more or less) irregular periods where parts of the timetable are changed. In order to operate a railway timetable most railway companies set up sequences that define the operation of timetabled trips by a single physical railway vehicle called (rolling stock) rotations. Not surprisingly, the individual parts of a timetable also affect the rotations. More precisely, each of the parts brings up an acyclic rolling stock rotation problem with start and end conditions associated with the beginning and ending of the corresponding period. In this paper, we propose a propagation approach to deal with large planning horizons that are composed of many timetables with shorter individual lifetimes. The approach is based on an integer linear programming formulation that propagates rolling stock rotations through the irregular parts of the timetable while taking a large variety of operational requirements into account. This approach is implemented within the rolling stock rotation optimization framework ROTOR used by DB Fernverkehr AG, one of the leading railway operators in Europe. Computational results for real world scenarios are presented to evaluate the approach.
Author: | Boris Grimm, Ralf BorndörferORCiD, Markus Reuther, Stanley Schade, Thomas Schlechte |
---|---|
Document Type: | In Proceedings |
Parent Title (English): | Proceedings of the IAROR conference RailLille |
Year of first publication: | 2017 |
Preprint: | urn:nbn:de:0297-zib-63930 |