Compact MIP Models for the Resource-Constrained Project Scheduling Problem

Please always quote using this URN: urn:nbn:de:0297-zib-60208
  • In the Resource-Constrained Project Scheduling Problem (RCPSP) a set of jobs is planned subject to resource- and precedence constraints. The objective is to minimize the makespan, that is the time when all jobs have been completed. There exist several Mixed-Integer-Programming (MIP) models in order to solve the problem. Most common models are based on time-discretization. In this case, the scheduling horizon is split into unit size intervals and each job gets assigned a unique starting interval. The drawback of time-discrete models is the computational intractability for large scheduling horizons or fine discretizations. In this connection, this thesis deals with compact MIP models where the model size is independent of the scheduling horizon. In addition to two compact models from the literature, we present two new compact models. We investigate their induced polyhedra and deduce an inclusion hierarchy via linear transformations. Moreover, we give a combinatorial interpretation of these transformations. Furthermore, we study a class of valid cutting planes for the compact models, which are known as cover inequalities. In order to strengthen these cutting planes we introduce a lifting algorithm that is independent of the model size. Subsequently, we examine lower bounds for the RCPSP from linear programming. Based on a linear transformation, we reveal a connection between two approaches from the literature. For one model we generate strong cutting planes that are obtained from a primal-dual relation between the models. Two cutting plane algorithms are derived. Likewise, we show that similar cutting planes can be transferred to the compact MIP models. Our models have been implemented, tested and evaluated on the instances of the PSPLIB problem library.

Download full text files

Export metadata

Metadaten
Author:Alexander Tesch
Document Type:Master's Thesis
Tag:Compact MIP; Resource-Constrained Project Scheduling
Granting Institution:Technische Universität Berlin
Advisor:Ralf Borndörfer, Rolf H. Möhring
Year of first publication:2015