Reoptimization Techniques in MIP Solvers

Please always quote using this URN: urn:nbn:de:0297-zib-54067
  • Many optimization problems can be modeled as Mixed Integer Programs (MIPs). In general, MIPs cannot be solved efficiently, since solving MIPs is NP-hard, see, e.g., Schrijver, 2003. Common methods for solving NP-hard problems are branch-and-bound and column generation. In the case of column generation, the original problem becomes decomposed or re-formulated into one ore more smaller subproblems, which are easier to solve. Each of these subproblems is solved separately and recurrently, which can be interpreted as solving a sequence of optimization problems. In this thesis, we consider a sequence of MIPs which only differ in the respective objective functions. Furthermore, we assume each of these MIPs get solved with a branch-and-bound algorithm. This thesis aims to figure out whether the solving process of a given sequence of MIPs can be accelerated by reoptimization. As reoptimization we understand starting the solving process of a MIP of this sequence at a given frontier of a search tree corresponding to another MIP of this sequence. At the beginning we introduce an LP-based branch-and-bound algorithm. This algorithm is inspired by the reoptimizing algorithm of Hiller, Klug, and the author of this thesis, 2013. Since most of the state-of-the-art MIP solvers come to decisions based on dual information, which leads to the loss of feasible solutions after changing the objective function, we present a technique to guarantee optimality despite using these information. A decision is based on a dual information if this decision is valid for at least one feasible solution, whereas a decision is based on a primal information if this decision is valid for all feasible solutions. Afterwards, we consider representing the search frontier of the tree by a set of nodes of a given size. We call this the Tree Compression Problem. Moreover, we present a criterion characterizing the similarity of two objective functions. To evaluate our approach of reoptimization we extend the well-known and well-maintained MIP solver SCIP to an LP-based branch-and-bound framework, introduce two heuristics for solving the Tree Compression Problem, and a primal heuristic which is especially fitted to column generation. Finally, we present computational experiments on several problem classes, e.g., the Vertex Coloring and k-Constrained Shortest Path. Our experiments show, that a straightforward reoptimization, i.e., without additional heuristics, provides no benefit in general. However, in combination with the techniques and methods presented in this thesis, we can accelerate the solving of a given sequence up to the factor 14. For this purpose it is essential to take the differences of the objective functions into account and to restart the reoptimization, i.e., solve the subproblem from scratch, if the objective functions are not similar enough. Finally, we discuss the possibility to parallelize the solving process of the search frontier at the beginning of each solving process.

Download full text files

Export metadata

  • Export Bibtex

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Jakob Witzig
Document Type:Master's Thesis
MSC-Classification:68-XX COMPUTER SCIENCE (For papers involving machine computations and programs in a specific mathematical area, see Section -04 in that area)
CCS-Classification:J. Computer Applications
Granting Institution:Technische Universität Berlin
Advisor:Martin Grötschel, Benjamin Hiller
Date of final exam:2014/10/20
Year of first publication:2014
Pagenumber:176
Licence (German):License LogoCreative Commons - Namensnennung-Nicht kommerziell-Keine Bearbeitung

$Rev: 13581 $