Highly scalable parallel linearly-implicit extrapolation algorithms

Please always quote using this URN: urn:nbn:de:0297-zib-5405
  • We present parallel formulations of the well established extrapolation algorithms EULSIM and LIMEX and its implementation on a distributed memory architecture. The discretization of partial differential equations by the method of lines yields large banded systems, which can be efficiently solved in parallel only by iterative methods. Polynomial preconditioning with a Neumann series expansion combined with an overlapping domain decomposition appears as a very efficient, robust and highly scalable preconditioner for different iterative solvers. A further advantage of this preconditioner is that all computation can be restricted to the overlap region as long as the subdomain problems are solved exactly. With this approach the iterative algorithms operate on very short vectors, the length of the vectors depends only on the number of gridpoints in the overlap region and the number of processors, but not on the size of the linear system. As the most reliable and fast iterative methods based on this preconditioning scheme appeared GMRES or FOM and BICGSTAB. To further reduce the number of iterations in GMRES or FOM we can reuse the Krylov-spaces constructed in preceeding extrapolation steps. The implementation of the method within the program LIMEX results in a highly parallel and scalable program for solving differential algebraic problems getting an almost linear speedup up to 64 processors even for medium size problems. Results are presented for a difficult application from chemical engineering simulating the formation of aerosols in industrial gas exhaust purification.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Rainald Ehrig, Ulrich Nowak, Peter Deuflhard
Document Type:ZIB-Report
Date of first Publication:1996/12/03
Series (Serial Number):ZIB-Report (TR-96-11)