Overview Statistic: PDF-Downloads (blue) and Frontdoor-Views (gray)

A Primal-Dual Approximation Algorithm for the Steiner Connectivity Problem

Please always quote using this URN: urn:nbn:de:0297-zib-42430
  • We extend the primal-dual approximation technique of Goemans and Williamson to the Steiner connectivity problem, a kind of Steiner tree problem in hypergraphs. This yields a (k+1)-approximation algorithm for the case that k is the minimum of the maximal number of nodes in a hyperedge minus 1 and the maximal number of terminal nodes in a hyperedge. These results require the proof of a degree property for terminal nodes in hypergraphs which generalizes the well-known graph property that the average degree of terminal nodes in Steiner trees is at most 2.

Download full text files

Export metadata

Metadaten
Author:Ralf BorndörferORCiD, Marika Karbstein
Document Type:ZIB-Report
Tag:Degree Property; Hypergraph; Primal-Dual Approximation; Steiner Connectivity Problem
MSC-Classification:05-XX COMBINATORICS (For finite fields, see 11Txx) / 05Cxx Graph theory (For applications of graphs, see 68R10, 81Q30, 81T15, 82B20, 82C20, 90C35, 92E10, 94C15) / 05C40 Connectivity
90-XX OPERATIONS RESEARCH, MATHEMATICAL PROGRAMMING / 90Cxx Mathematical programming [See also 49Mxx, 65Kxx] / 90C27 Combinatorial optimization
90-XX OPERATIONS RESEARCH, MATHEMATICAL PROGRAMMING / 90Cxx Mathematical programming [See also 49Mxx, 65Kxx] / 90C59 Approximation methods and heuristics
Date of first Publication:2013/11/09
Series (Serial Number):ZIB-Report (13-54)
ISSN:1438-0064
Accept ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.