Overview Statistic: PDF-Downloads (blue) and Frontdoor-Views (gray)

Melting Transitions in Small Aluminum Clusters Simulated with Energies Approaching DFT Accuracy.

revision under review
  • We describe a computational framework for modelling melting-like transitions in atomic clusters that combines first-principles energy calculations, global optimization, and machine-learned interatomic potentials. A diverse set of configurations is generated by global optimization, and energies are calculated by Density Functional Theory. The energies are fitted to an accuracy of 10 meV/atom or better with an Allegro E(3)-equivariant neural network potential. The model allows efficient parallel tempering Monte Carlo simulations with near DFT-level accuracy. This methodology was validated by simulating Na_20 and comparing it to earlier experimental and computational results. We used it to study melting-like transitions in Al_n+ clusters (n=9 to 16), and Al_n and Al_n^- (n=12, 13,14). The simulated heat capacity of these clusters, in particular Al_16+, are in qualitative agreement with experiments. The melting point of Al_n+ clusters with n=11-16 are well above the bulk melting point (934 K). The closed-shell Al_13- species has an exceptionally high melting point, close to 2100 K.
Metadaten
Author:Anirudh KrishnadasORCiD, Nicolas Charron, Rene Fournier
Document Type:Article
Parent Title (English):ACS Publications- Journal of Chemical Theory and Computation
Year of first publication:2025
Accept ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.