
Zuse Institute Berlin Takustr. 7
14195 Berlin

Germany

RALF BORNDÖRFER1 , STEPHAN SCHWARTZ2 , WILLIAM SURAU3

Vertex Covering with Capacitated Trees

1 0000-0001-7223-9174
2 0000-0003-2901-5065
3 0000-0003-1104-3383

ZIB Report 21-14 (June 2021)

https://orcid.org/0000-0001-7223-9174
https://orcid.org/0000-0003-2901-5065
https://orcid.org/0000-0003-1104-3383

Zuse Institute Berlin
Takustr. 7
14195 Berlin
Germany

Telephone: +49 30 84185-0
Telefax: +49 30 84185-125

E-mail: bibliothek@zib.de
URL: http://www.zib.de

ZIB-Report (Print) ISSN 1438-0064
ZIB-Report (Internet) ISSN 2192-7782

bibliothek@zib.de
http://www.zib.de

Vertex Covering with Capacitated Trees

Ralf Borndörfer Stephan Schwartz William Surau

Zuse Institute Berlin, Takustr. 7, 14195 Berlin

Abstract

The covering of a graph with (possibly disjoint) connected subgraphs is a fundamental prob-
lem in graph theory. In this paper, we study a version to cover a graph’s vertices by connected
subgraphs subject to lower and upper weight bounds, and propose a column generation ap-
proach to dynamically generate feasible and promising subgraphs. Our focus is on the solution
of the pricing problem which turns out to be a variant of the NP-hard Maximum Weight Con-
nected Subgraph Problem. We compare different formulations to handle connectivity, and find
that a single-commodity flow formulation performs best. This is notable since the respective
literature seems to have dismissed this formulation. We improve it to a new coarse-to-fine flow
formulation that is theoretically and computationally superior, especially for large instances
with many vertices of degree 2 like highway networks, where it provides a speed-up factor of 10
over the non-flow-based formulations. We also propose a preprocessing method that exploits a
median property of weight constrained subgraphs, a primal heuristic, and a local search heuris-
tic. In an extensive computational study we evaluate the presented connectivity formulations
on different classes of instances, and demonstrate the effectiveness of the proposed enhance-
ments. Their speed-ups essentially multiply to an overall factor of 20. Overall, our approach
allows the reliabe solution of instances with several hundreds of nodes in a few minutes. These
findings are further corroborated in a comparison to existing districting models on a set of test
instances from the literature.

1 Introduction

Partitioning a graph subject to constraints on the components is a basic problem in graph theory, com-
binatorial optimization, and computer science: Connected and homogeneous components are supposed
to contain related and similar items, respectively, and capacitated components of similar size can be dis-
tributed to processors of equal capacity. The treatment of such constraints is clearly at the heart of every
solution method. We will argue in this paper that single commodity flows, which seem to have been dis-
missed in the graph partitioning literature, can be a versatile and powerful tool to deal with connectivity
constraints, and that homogeneity can be expressed –in an algorithmically advantageous way– in terms of
medians, at least for a certain type of graph partitioning problems that arise from districting. While these
concepts are general and should carry over to other (graph partitioning) problems involving connectivity,
our exposition will be based upon and is motivated by a concrete real-world application of toll enforce-
ment. A recent survey on homogeneous covering and partitioning problems, as well as heuristic and exact
solution approaches can be found in [Sch20].

1

Graph partitioning problems have a broad range of applications in parallel computation, scheduling,
network design, problem decomposition, image processing, etc., see [Bul+16] for a survey. We are par-
ticularly interested in geographical districting, which finds its use in political districting [Hes+65; GN70;
MJN98; RSS13] or the planning of school districts [FG90], police patrol areas [Ami+02; CHQ10; CCY19],
sales territories [HS71; FP88; ZS05; SRC11], and even waste collection [CGP19]. In all these applica-
tions, a geographical map is represented as a graph, which is segmented into smaller regions, the districts.
These should have desirable properties including contiguity, compactness, and balancedness with respect
to criteria such as the number of voters, children, or customers. While contiguity and balancedness are
clear, compactness is a more fuzzy goal that is typically handled in the objective function. Informally, the
districts should be as “round-shaped” as possible. In political districting, this is supposed to counteract
gerrymandering, i.e., the creation of politically biased voting districts. In other applications, the objective
aims at minimizing the distance between any two points in the district, or between any point and the
district center, see [KR19] for an overview of different formalizations of “compactness”.

The problem motivating this study concerns the optimal toll enforcement on road networks with traffic
volumes on the edges. Our goal is to find a segmentation of the network into smaller, connected, and
possibly overlapping parts of similar size that contain roads with similar traffic volume. The latter property
is referred to as “homogeneity” and corresponds to the compactness requirement of districts. Transforming
the problem to the line graph blends in with the literature on districting problems.

As for the compactness, homogeneity is a vague quantity. A number of possibilities to measure homo-
geneity are overviewed by Hansen and Jaumard [HJ97]. All measures are based on the dissimilarity of
values duv for every node pair (u, v) and aim at either maximizing the separation between different groups,
or the homogeneity within the individual group. If we define dissimilarities as bee-line or shortest path
distances, the concepts of compactness and homogeneity coincide and can be handled in the same way.
We propose to do that by measuring homogeneity in terms of the difference dv − dc to a district center
c, whose node value dc is the median of all node values in its district. The district center minimizes the
sum of absolute differences and can be determined efficiently, and, even more important, it will turn out
that the median property gives rise to a number of very effective preprocessing techniques that reduce the
problem size substantially.

Districting problems are often solved heuristically, e.g., with tabu search, simulated annealing, and ge-
netic algorithms [RSS13]. Exact solution approaches are rare. Early formulations enumerate all possible
districts [GN70; Nyg88]. Mehrotra, Johnson, and Nemhauser [MJN98] propose a column generation ap-
proach to reduce the number of considered subgraphs. However, they restrict the set of feasible districts
by first demanding that any district node has to be within a (unit edge-weight) radius of 2 from the
district center, and, second, by requiring any district to be a subtree of the shortest path tree rooted at
the district center. The latter restriction is likewise imposed by Clautiaux, Guillot, and Pesneau [CGP19],
who also employ column generation for a districting problem. This additional constraint simplifies the
pricing problem drastically: On a tree, it can be solved with a dynamic programming algorithm [CS97] or
a special branch-and-bound procedure [SC98]. A different exact approach was proposed by Segura-Ramiro
et al. [Seg+07]. Binary variables xuv indicate if node u belongs to the district centered at node v. The
connectivity of the districts is enforced by node separator inequalities that are similar to subtour elimi-
nation constraints. While the implementation of the model is not pursued in [Seg+07], a cutting plane
approach for the separation of violated inequalities is implemented by Salazar-Aguilar, Ŕıos-Mercado, and
Cabrera-Ŕıos [SRC11].

We consider in this paper a column generation approach that prices arbitrary connected districts, i.e., we
dismiss the restriction to subtrees of shortest path trees. To the best of our knowledge, this general version
has not been studied before, and we will show that the expanded scope has theoretical and practical
consequences. Namely, our pricing problem becomes a rooted and budgeted variant of the well-known
Maximum Weight Connected Subgraph Problem (MWCS). The most prominent MIP approaches to the
MWCS are based on single-commodity flows, multi-commodity flows, arc separators, and node separators,

2

which we review and compare. Our results show that the single-commodity flow formulation provides
the best overall performance on all considered instances. This is particularly interesting as most of the
existing computational comparisons for MWCS formulations do not include this “forgotten” formulation.
We propose to revive it and suggest an improvement that is based on the coarse-to-fine (C2F) paradigm,
combining one coarse and many fine single commodity flows. This new coarse-to-fine single commodity
flow formulation is particularly suited for graphs with a large fraction of degree 2 vertices, which is a
typical property of transit networks such as motorway networks or public transport networks. In this case,
the C2F flow formulation is theoretically superior to the standard single-commodity flow formulation, and
it outperforms the non-flow-based formulations by a speed-up factor of 10.

Finally, we perform an extensive computational study. We report on computational experiments on 24
real-world instances from a toll enforcement problem on the German motorway network. We compare dif-
ferent connectivity formulations, and measure the impact of algorithmic components such as preprocessing,
primal heuristics, and local search. Remarkably, these improvements are almost orthogonal and essentially
multiply to an overall speed-up factor of 20. To expand the spectrum of scenarios, we propose a method
to generate synthetic transit networks from Voronoi diagrams or trees. The computational study on these
instances confirms the results from the real-world scenarios. Overall, our approach allows the reliable
solution of instances with several hundreds of nodes in a few minutes. We also compare our SCF based
column generation approach to the integrated IP approaches described above on a set of test instances
from [SRC11]. The results show that our approach can compete with the existing models. In fact, it turns
out to be the only one that can solve all instances within the given time limit.

The rest of the paper is structured as follows. In Section 2 we introduce our median approach to modeling
homegeneity, formalize the problem, settle the complexity, and outline our column generation approach.
Section 3 is dedicated to the pricing problem, which turns out to be a variant of the Maximum Weight
Connected Subgraph Problem. We review MIP formulations for connectivity, propose a new coarse-to-fine
single commodity flow approach, and show that it produces tighter formulations than the standard one.
We also propose a number of preprocessing techniques for the pricing problem and present a local search
heuristic. The presented formulations and improvements are evaluated in our computational study in
Section 4, and we conclude in Section 5.

2 The HCTCP and a Column Generation Approach

In this section, we formalize the investigated covering problem, the HCTCP, discuss the penalization of
inhomogeneity, and prove that the HCTCP is NP-hard. Finally, we present an integer program (IP) for
this problem and describe a column generation approach for the linear relaxation.

Definitions and Notation For variables or parameters ϕ defined on a finite set X and for X ′ ⊆ X, we
denote by ϕ(X ′) the sum

∑
x∈X′ ϕx. In addition, for a graph G and a vertex set V ′ ⊆ V (G), we denote

by G[V ′] the induced subgraph by V ′. Also, we write v ∈ G instead of v ∈ V (G).

For the Homogeneous Capacitated Tree Covering Problem (HCTCP) we consider an undirected graph
G = (V,E) with two vertex weights w, d ∈ RV≥0 that can be interpreted as the weight and, respectively,
the demand of a vertex. In addition, we are given weight bounds 0 ≤ WL ≤ WU . By TL,U we denote the
set of trees T ⊆ G with WL ≤ w(T) ≤ WU . The elements of TL,U are also referred to as templates. The
inhomogeneity of a template T is penalized by

p(T) := min
u∈T

∑
v∈T

wv |du − dv|. (1)

The HCTCP is to find any number of trees T1, . . . , Tt ∈ TL,U with V =
⋃t
i=1 V (Ti) minimizing

∑t
i=1 p(Ti).

3

First, we note that the restiction to trees, instead of arbitrary connected subgraphs, is not a limitation.
Since we are only concerned with vertex weights, adding additional edges to a subgraph does not affect
its penalty nor the vertex covering. However, for brevity, it is more convenient to speak of trees instead of
connected subgraphs. Next we discuss the choice of the inhomogeneity penalty.

Penalizing Inhomogeneity A few remarks concerning the penalty function are in place. Our goal is to
penalize the inhomogeneity of a template T with respect to d, i.e., the values (dv)v∈T should be as similar
as possible. A number of measures for (in)homogeneity are listed by Hansen and Jaumard [HJ97], a recent
survey can be found in [Sch20]. Our penalty function is a weighted version of the star measure discussed
in both articles, i.e., in the star objective function each wv is replaced by 1.

While general approaches consider arbitrary dissimilarities (duv) between node pairs, we are concerned
with a node weight induced measure. Note that our measure can easily be extended to multidimensional
vertex weights d by applying a vector norm instead of the absolute value.

More important, however, is that the (weighted) star measure induces a special center of the template:
The vertex u ∈ T that minimizes the (weighted) sum of differences. We call this node the root of the
template, and since it is not necessarily unique, we accept any node that minimizes the expression as root
of the template. It is well known that for the star objective, the root node is the one with median demand,
since the median minimizes the sum of absolute deviations. Furthermore, this property carries over to
the weighted median, as we will discuss in detail in Section 3.4. The minimization of the expression with
multidimensional weights d was examined in [VZ00].

The results of this paper translate to the star objective, i.e., to the unweighted median case. We
implemented and tested both variants. However, we decided to present the results focussing on the more
general case of the weighted median. This is particularly important for our preprocessing routine presented
in Section 3.4.

Complexity The HCTCP is NP-hard. A reduction from the number partitioning problem is straight
forward. Given a multiset S = {s1, . . . , sn} of positive integers, the partitioning problem asks for a
partition into two subsets S1 and S2 whose elements sum up to the same number. By considering a
complete graph on S with vertex weights wi = si and arbitrary d, and by setting WL = WU = 1

2

∑n
i=1 si,

we can see that this HCTCP instance has a feasible solution iff the partitioning instance is feasible.
Note that the reduction exploits that we can set WL = WU . While the general case remains open, we

can prove NP-hardness under slightly modified conditions. If the cardinality t of a covering would be part
of the input, we could reduce the bin packing problem to this HCTCP version without the use of a lower
weight bound WL (cf. [CGP19]). This still does not take the special objective function into account. Let
us therefore assume that the covering cardinality is not specified and that the dissimilarities are given as
a matrix (duv) instead of the node induced dissimilarity. In this case, a reduction from bin packing is still
possible. Given a bin packing instance with item weights w1, . . . , wn and bin capacity W , we consider the
accordingly weighted complete graph and set WL = 0 and WU = W . By defining the dissimilarity matrix
with values dvv = 1

wv
and 0 off the diagonal, we attain that every subgraph has a penalty of 1. Hence,

the objective of this HCTCP is to minimize the number of covering trees, which is equivalent to the bin
packing problem.

A Column Generation Approach We start with a very basic IP formulation for the HCTCP. To this end,
we consider the inhomogeneity penalty for template T as a parameter pT ≥ 0. Since the set TL,U consists
of all feasible templates, we can use the following classical covering IP formulation:

4

min
x

∑
T∈TL,U

pT xT (2a)

s.t.
∑
T3v

xT ≥ 1 ∀v ∈ V (2b)

xT ∈ {0, 1} ∀T ∈ TL,U (2c)

We have a binary variable for every feasible template (2c), and minimize the cumulated penalty (2a)
while covering all vertices (2b). While this formulation is simple and self-evident, it is impracticable to
enumerate all feasible templates or determine all associated penalties. Therefore, we propose a column
generation scheme to iteratively generate only promising templates.

Using the linear programming relaxation and introducing dual variables (πv) for the constraints (2b) we
obtain the following dual LP.

max
π

∑
v∈V

πv (3a)

s.t.
∑
v∈T

πv ≤ pT ∀T ∈ TL,U (3b)

πv ≥ 0 ∀v ∈ V (3c)

Given the dual values corresponding to an optimal primal LP solution, the reduced costs for a template
T ∈ TL,U are therefore pT −

∑
v∈T

πv. Hence, the pricing problem in a column generation approach is

min
T∈TL,U

pT −
∑
v∈T

πv. (4)

3 Solving the Pricing Problem

Let us take a closer look at the pricing problem. We are now looking for a single feasible template that
minimizes a combination of its penalty and the dual values on the vertices. Resubstituting for pT yields

min
T∈TL,U

(
min
u∈T

∑
v∈T

wv |du − dv|

)
−
∑
v∈T

πv.

We can tackle this problem in two different ways. First, we can setup a single IP to find a template
T with minimum reduced costs in G. Therefore, we introduce a binary variable yv for each v ∈ V that
indicates if v ∈ T . For determining the penalty of the constructed template, we precompute all differences
duv = |du−dv|, and introduce a variable δuv for every pair of vertices with δuv = 1 iff v ∈ T and u is the root
of T . Note that δuu indicates if u is the root of T . The main challenge in the formulation, however, is to
ensure the connectivity of the template. Let us ignore for the moment the specifics of this constraint and,
istead, use the set Y := {χ(V ′) : V ′ ⊆ V such that G[V ′] is connected}. The convex hull of Y is known
as the connected subgraph polytope and we will discuss the modelling of Y in Section 3.1. A resulting IP
formulation for the pricing problem can then be stated as follows.

5

min
y, δ

∑
u,v ∈V

wv duv δ
v
u −

∑
v∈V

πv yv (5a)

s.t. WL ≤
∑
v∈V

wv yv ≤ WU (5b)∑
u∈V

δuu = 1 (5c)

δuu ≤ yu ∀v ∈ V (5d)

δuu + yv − 1 ≤ δuv ∀u, v ∈ V (5e)

y ∈ Y (5f)

δuv ∈ {0, 1} ∀u, v ∈ V (5g)

The objective (5a) is straight forward, and (5b) enforce the weight constraints. Then, (5c) guarantees
that exactly one root is chosen, and (5d) that the root is indeed part of the template. Constraints (5e)
couple the root vertex with the template vertices, and, finally, we have the unspecific connectivity constraint
(5f).

A second variant to solve the pricing problem is to consider the problem for fixed roots. As we will see,
this significantly simplifies the formulation. The question is, if it is better to solve one large optimization
problem or many smaller problems, i.e., one for every vertex. If we fix a vertex r to be the (potential) root
of the template, we can eliminate the δ variables and obtain the following simpler IP formulation.

min
y

∑
v ∈V

(wv drv − πv) yv (6a)

s.t. WL ≤
∑
v∈V

wv yv ≤ WU (6b)

yr = 1 (6c)

y ∈ Y (6d)

The objective (6a) is much simpler than in the preceding integrated approach. Furthermore, we can not
only drop quadratically many δ variables, but also lose the complicated coupling constraints. This makes
the problem much more amenable. Indeed, we found that it is far superior to solve a rooted IP (6) for
every vertex, instead of solving the single, more complex IP (5). Therefore, let us further investigate the
rooted formulation (6).

By defining cv := πv − wv drv and by replacing the objective (6a) with maxy
∑
v∈V cv yv, we can

transform the problem (6) into a maximization problem. Now, we are seeking a connected subgraph of
maximum weight c that contains some root node r and that is capacitated from below and above with
respect to vertex weights w. This problem is particularly close to the well-studied Maximum Weight
Connected Subgraph Problem which we will outline in the following.

Maximum Weight Connected Subgraph (MWCS)

Instance: G = (V,E), c ∈ RV .

Problem: Find V ′ ⊆ V such that G[V ′] is connected and c(V ′) is maximal.

In the rooted version of MWCS, a given set R ⊆ V has to be a subset of the selected nodes V ′. In the
budgeted variant, we are given additional weights w ∈ RV≥0 and numbers 0 ≤WL ≤WU , and demand that

6

w(V ′) ∈ [WL,WU]. Since the restriction to trees of maximum weight is again without loss of generality,
our pricing problem is a single-rooted and budgeted MWCS.

A plethora of applications has driven the research on the MWCS and its variants. This includes ap-
plications in oil-drilling [HP94], communication network design [LD98; KLT15], systems biology [Ide+02;
Dit+08; Yam+09; Bac+12], environmental conservation [Con+07; DG10], video activity detection [CG12],
and forest planning [Car+13].

Despite these numerous studies, and to the best of our knowledge, the single-rooted, general budgeted
MWCS has not been considered before. The only works that consider a lower bound WL > 0 seem to be
[HP94; LD96] and [LD98], where w ≡ 1 and WL = WU = k, i.e., a connected subgraph of maximum weight
with exactly k nodes is sought. All three papers settle for suboptimal solutions. While Hochbaum and
Pathria [HP94] present a dynamic program that is optimal on trees, but only provides a 1

k -approximation
for general graphs, Lee and Dooly [LD98] propose a heuristic that reduces the problem to the single-rooted
case. The single-rooted case of k-MWCS is discussed in [LD96]. The authors present a single-commodity
flow formulation, but dismiss the approach because the LP relaxation is not optimal. Instead, they propose
heuristic algorithms based on enumerating possible vertex choices.

The works of Dilkina and Gomes [DG10] and Álvarez-Miranda, Ljubić, and Mutzel [ÁMLM13b] are
closest to our pricing problem. Both consider a rooted and budgeted MWCS where only an upper weight
bound is imposed, i.e., WL = 0. The connectivity models and results therein are detailed in the following
section.

3.1 Enforcing Connectivity in MIPs

In this section, we discuss various ways to model connectivity within a (mixed) integer program ((M)IP).
A decent number of papers are dedicated to this problem and the related study of the connected subgraph
polytope. These are mostly motivated by the Steiner tree problem and its variants concerning Steiner ar-
borescences, prize-collecting Steiner tree, and maximum weight connected subgraphs. Similar connectivity
formulations, apart from the vast literature concerning travelling salesman problems, originate for instance
from the generalized minimum spanning tree problem [MLT95; Pop09; Pop20], a connected network design
problem [MR05] or the minimum arborescence problem [Duh+08].

The first connectivity models for Steiner problems by Aneja [Ane80] and Wong [Won84] date back to the
1980s and propose a ”row generation scheme” using minimum cuts, and, respectively, a multi-commodity
flow. Since then, other formulations as well as new separation and preprocessing techniques have been
developed. A review of different formulations and comparisons of the respective LP relaxations can be
found in [GM93; KPH93; MW95; PD01; RFK20]. In addition, computational comparisons of distinct
models for variants of the Steiner tree problem are carried out in [DG10; ÁMLM13a; ÁMLM13b; Fis+17].
An excellent survey article by [Lju20] covers all relevant topics concerning Steiner trees, including variants,
MIP formulations, preprocessing techniques, and applications.

Complementing the variety of IP formulations, the problem has also been studied from a polyhedral
perspective. The connected subgraph polytope is the convex hull of all node incidence vectors inducing
a connected subgraph. A full description is known when the graph is a tree [KLS91], a cycle [Goe94b],
series-parallel [Goe94b], or complete bipartite [Lüt18]. Other important facets and valid inequalities for
the mentioned and related polytopes are presented in [CR94; KM98; ÁMLM13a; ÁMLM13b; WBB17].
The edge-induced connected subgraph polytope was studied in [Goe94a; Goe94b; KZ14; BKN15].

Computational studies show that preprocessing methods and primal heuristics generally have a huge
impact on the solution time. Reduction tests can prove that certain nodes or edges must belong to every
solution, or that they cannot be part of any solution. This helps to drastically reduce the problem size.
A number of techniques for different Steiner problems are proposed in [CGR92; KM98; PD01; CCL06;
Lju+06; GVHS08; EKK14; Lei+18; RK19; RKM19]. Unfortunately, these algorithms are highly problem
specific, and most of the approaches do not translate to our pricing problem, since they conflict with our

7

capacity constraints WL ≤ w(T) ≤ WU or make use of Steiner terminals that we do not have. However,
we will confirm the strong impact of our proposed preprocessing routine (cf. Section 3.4) as well as a local
search procedure (cf. Section 3.5).

Let us now focus on the two works concerning the rooted and budgeted MWCS that are closest to our
pricing problem. Dilkina and Gomes [DG10] compare three connectivity models: A single-commodity flow
(SCF), a multi-commodity flow (MCF), and a Steiner arborescence (SA) formulation based on cuts. On
100 synthetic 10× 10 grid instances with 3 roots, the computational comparison shows that the SCF LP
relaxation is fastest but provides the worst integrality gap. The SA LP relaxation is also relatively fast
and gives the best gap. The MCF LP relaxation is the slowest of the three models and the gap is between
the SCF and SA relaxations. With respect to optimal integer solutions, the results in [DG10] indicate that
SCF is best if the upper weight bound WU is so large that it almost can be ignored. In the other case,
however, SA performs better on the considered instances.

Álvarez-Miranda, Ljubić, and Mutzel [ÁMLM13b] refrain from including the SCF formulation into
their computational comparison, and only evaluate the SA formulation against a node separator (NS)
formulation. They find that the performance of the two formulations is complementary, and depends on
the instance. It seems as the NS formulation with fewer variables performs better on dense graphs, whereas
the SA formulation seems better suited for sparser graphs.

Now that we have reviewed the literature on MIP formulations for connected subgraphs, with an em-
phasis on the MWCS, we shift our focus to the single-rooted case. For a graph G = (V,E) and a node
r ∈ V , an r-tree is a tree of G containing r. Consequently, we study the r-tree polytope, i.e., the convex
hull of

Yr := {χ(V ′) : V ′ ⊆ V is the vertex set of an r-tree}.
Note that Yr is, in fact, a facet of the connected subgraph polytope. Goemans [Goe94b] studies the

related r-tree polytope conv(Y+
r) in the dimension {0, 1}|E|+|V |, i.e., he considers a concatenation of edge

and node incidence vectors of r-trees. Clearly, conv(Yr) is a projection of conv(Y+
r). Since Goemans

[Goe94b] gives a full description of conv(Y+
r) if G is a cycle or series-parallel, the optimization over

conv(Yr) is also polynomial in these cases. We note that in [Goe94b], the empty graph is also considered
an r-tree to simplify the polyhedral study. Since this edge case is not practically relevant, and for ease of
exposition, we exclude the empty graph from Yr.

The presence of a single root simplifies the (M)IP formulations. Hence, we present four important
formulations that describe Yr. For some of the formulations we consider the bidirected version D = (V,A)
of the undirected graph G = (V,E).

Single-Commodity Flow (SCF) A single-commodity flow to ensure connectivity was proposed by Gavish
and Graves [GG81] in the context of the travelling salesman problem. Maculan [Mac87] transforms the
formulation to the Steiner tree problem. Similar SCF models are used in [LD96; Shi05; Con+07] and
[DG10]. The latter two papers consider a rooted and budgeted (only with upper bounds) version of
MWCS. Our formulation is adapted for the single-root case. This spares us from introducing an artificial
super source.

yr = 1 (7a)∑
a∈δ−(v)

xa −
∑

a∈δ+(v)

xa = yv ∀v ∈ V \ {r} (7b)

xuv ≤ M yv ∀(u, v) ∈ A (7c)

xa ≥ 0 ∀a ∈ A (7d)

yv ∈ {0, 1} ∀v ∈ V (7e)

8

The idea is to construct a flow that emerges at the root node and where each node of the chosen
subgraph consumes one unit of flow while all other nodes satisfy flow conservation. This is ensured by
equalities (7b). Inequalities (7c) are necessary to activate every node that is used by the flow. The use of
a big M parameter is bad for the LP relaxation, but necessary. It should be chosen as small as possible,
and M = |V | − 1 is an upper bound.

Multi-Commodity Flow (MCF) The first multi-commodity flow formulation for connectivity is due to
Beasley [Bea84] and, independently, to Wong [Won84]. Maculan [Mac87] shows that the LP relaxation
of MCF is stronger than the SCF relaxation. As stated above, Dilkina and Gomes [DG10] empirically
confirm this result on synthetic grid instances, but find that SCF performs much better. Our results on
real-world and fabricated instances substantiate this conclusion.

yr = 1 (8a)∑
a∈δ−(w)

xva −
∑

a∈δ+(w)

xva = 0 ∀v, w ∈ V \ {r}, w 6= v (8b)

∑
a∈δ−(v)

xva = yv ∀v ∈ V \ {r} (8c)

∑
a∈δ+(v)

xva = 0 ∀v ∈ V \ {r} (8d)

xwa ≤ yv ∀v, w ∈ V \ {r}, a ∈ δ−(v) (8e)

xva ≥ 0 ∀a ∈ A, ∀v ∈ V \ {r} (8f)

yv ∈ {0, 1} ∀v ∈ V (8g)

In the MCF formulation, we consider an r-v flow xv for every node v 6= r. Flow conservation is stated
in (8b), and the flow value is determined by (8c) and (8d): It is set to 1, if node v is chosen, and otherwise
set to 0. Finally, (8e) guarantees, that a node is chosen if any flow uses it.

The advantage of the MCF formulation is that the arc flow is binary and hence, we have no big M .
This benefits the LP relaxation of the MCF. On the other hand, the number of variables and constraints
is much larger than in the SCF formulation.

Rooted Arc Separators (RAS) A second way to enforce connectivity is with separators. First, we
consider a formulation using edge cuts. As our problem is stated on an undirected graph, we can stick
with the natural undirected formulation, first proposed by Aneja [Ane80], or consider the corresponding
formulation in the bidirected graph. Chopra and Rao [CR94] show that the LP relaxation of the bidirected
formulation is tighter than for the undirected case. Goemans and Myung [GM93] further investigate the
relation between the two and give an extended undirected relaxation that is equivalent to the bidirected
arc cut relaxation. However, we present the in the literature predominantly used arc formulation, that
goes back to a Steiner arborescence formulation by Wong [Won84]. Similar models are applied in [KM98;
Lju+06; Duh+08; DG10; ÁMLM13b; Fis+17; RK19].

9

yr = 1 (9a)∑
a∈δ−(v)

xa = yv ∀v ∈ V \ {r} (9b)

∑
a∈δ−(S)

xa ≥ yv ∀v ∈ S, ∀S ⊆ V \ {r} (9c)

xa ∈ {0, 1} ∀a ∈ A (9d)

yv ∈ {0, 1} ∀v ∈ V (9e)

If the x variables span an arborescence rooted at r, then the nodes of the arborescence form a connected
subgraph in G. Therefore, we have (9b) to activate the nodes of the arborescence, and to ensure an
in-degree of 1. In addition, we have (9c) to ensure that there is a directed r-v-path, if v is chosen.

The set δ−(S) in (9c) is an arc separator for r and v, i.e., there is no r-v-path in D \S. Since there is an
exponential number of these constraints, the LP relaxation is solved with a cutting plane approach. The
crucial ingredient is the separation routine, where violated constraints are identified. If the maximum flow
value from r to v in D with arc capacities x is smaller than yv, the inequality of any corresponding minimum
cut is violated. Hence, the separation can be solved efficiently with n− 1 maximum flow computations.

There are a number of possibilities to strengthen the LP relaxation of the model (see [KM98; Lju+06;
Fis+17]). For instance, the initial model should be extended with 2-cycle inequalities xuv + xvu ≤ yv for
every (u, v) ∈ A, allowing at most one of each bidirected arc pair to be part of the arborescence. Also, the
valid inequalities yv ≥ xvw for every (v, w) ∈ A, v 6= r should be included at the beginning. Ljubić et al.
[Lju+06] note that for any separator S and for v ∈ S we can add the equations (9b) for nodes in S and
subtract the inequality (9c) to obtain the valid inequality∑

a∈A∩S2

xa ≤
∑

u∈S\{v}

yu.

These generalized subtour elimination constraints are already studied by Goemans [Goe94b], and found to
be facet-defining under certain circumstances.

Other tricks are concerned with improving the separation routine. First of all, we have to decide when
to cut off fractional solutions of the LP relaxation. While Ljubić et al. [Lju+06] decide to check for a
violated inequality for each v with yv > 0, Fischetti et al. [Fis+17] choose a threshold of yv ≥ 0.5 for a
fractional separation, and Dilkina and Gomes [DG10] separate only for yv > 1− ε. Further improvements
like back cuts, nested cuts, and the use of minimum cardinality separators were proposed by Koch and
Martin [KM98] and empirically confirmed in [Lju+06] and [Fis+17].

The idea of back cuts, that was already described by Chopra, Gorres, and Rao [CGR92], is to find a
maximum flow (minimum cut) not only in the described network but also in the reversed network where
every arc is flipped. As the resulting cuts tend to be different, more cuts are generated and the number
of cutting plane iterations empirically decreases. Ljubić et al. [Lju+06] note that both cuts (forward and
backward) can be found with one maximum flow calculation using a specific implementation from [CG95].

Nested cuts are another way to generate more cuts in a single cutting plane iteration. The idea is to set
all capacities of already found minimum cut arcs to 1, and to iterate until the flow value is 1. This ensures
that arc sets of found violated cuts are disjoint.

The third approach for enhancing the separation is to use minimum cuts of minimum cardinality. There-
fore, a small ε > 0 is added to every capacity before computing a maximum flow. While this might lead
to increased running times of flow calculations, the use of minimum cardinality cuts can have a great
impact on the overall performance. Indeed, the results are split. While [KM98] and [Fis+17] confirm a
very positive effect, [Lju+06] report extended running times.

10

Rooted Node Separators (RNS) The rooted node separators formulation is similar to the previously
described RAS, but can be formulated on the original undirected graph and uses only node variables.
Such a formulation was first used by Fügenschuh and Fügenschuh [FF08] and later applied in [Bac+12;
ÁMLM13b; Car+13; ÁMS17; Fis+17].

Let us denote by N (r, v) the set of r-v-node separators, i.e., all sets S ⊆ V such that there is no r-v-path
in G \ S.

yr = 1 (10a)∑
w∈S

yw ≥ yv ∀v ∈ V \ {r}, ∀S ∈ N (r, v) (10b)

yv ∈ {0, 1} ∀v ∈ V (10c)

The formulation is straight forward. Inequalities (10b) ensure that if node v is chosen, then any r-v-node
separator must also contain a chosen node.

For the separation routine we describe two possibilities. The first one is in accordance with the RAS
separation and described, for instance, in [FF08] and [ÁMLM13b]. A directed auxiliary graph D is created
by splitting each node v into an arc (vin, vout) with capacity yv. Every edge vw ∈ E is replaced by the
arcs (vout, win) and (wout, vin), each with capacity 1. Now, all procedures from the RAS separation carry
over, when comparing the maximum rout-vin-flow value to yv.

Since the described separation procedure is rather time consuming, Fischetti et al. [Fis+17] propose a
different variant that ignores violations of (10b) for fractional solutions. Instead, their separation routine
is only called when the branching produced an integer solution. A great advantage of this approach is that
the authors of [Fis+17] show that minimal separators for integer solutions can be found in linear time.

Spanning Tree Heuristic (STH) The idea of the spanning tree heuristic is to determine a suitable
spanning tree T of G and to solve the HCTCP on T instead of G. Magnanti and Wolsey [MW95] give a
full description of Yr if G is a tree. Let us denote by π(v) the predecessor of v 6= r on the unique r-v-path.
Then, the following inequalities are a complete description of Yr.

yr = 1 (11a)

yv ≤ yπ(v) ∀v ∈ V \ {r} (11b)

yv ≥ 0 ∀v ∈ V (11c)

A maximum weight r-subtree of an r-tree is usually determined by a dynamic program, see [MW95].
The authors also propose a dynamic programming approach for the capacitated version, but only for the
case WL = 0, i.e., without a lower weight bound. We refrain from developing an adjusted dynamic program
for the general capacitated case. Instead, we use the LP formulation (11), which shows to be solved very
fast.

While this approach works with any spanning tree, we choose one that is particularly suited for the
median objective. In particular, we consider a bidirected version of G and set arc weights ϕu,v := |dv−dr|
for arc (u, v). The chosen spanning tree is now a shortest-path tree from r with respect to ϕ.

3.2 Coarse-to-Fine Flow Formulation

In this section, we discuss how to improve the SCF for graphs with a large fraction of degree 2 vertices.
These graphs usually contain long induced paths where every vertex has degree 2. We exploit the fact
that with any chosen vertex of such a path (not containing the root), at least one of the endpoints of

11

the path has to be chosen as well. Following this idea, the coarse network is formed by contracting the
specified paths. Moreover, the connectivity on each of the paths can be modeled as a separate SCF with
two possible roots, the fine flow. In doing so, we are able to set smaller big M values on the fine flow
problems which leads to a better LP relaxation than the ordinary SCF.

Construction Given is a graph G = (V,E) together with a root r ∈ V and the vertices of the coarse
network Vc ⊆ V with r ∈ Vc. Let V>2 ⊆ V be the vertices with degree greater than 2, and we demand
V>2 ⊆ Vc. Note that with this condition, each connected component of the induced subgraph G[V \ Vc] is
a path. The arcs of the coarse network Dc = (Vc, Ac) are constructed as follows: Whenever there exists
a path between two coarse vertices u, v ∈ Vc, only containing vertices from V \ Vc (except for u and v),
the path is replaced by two coarse arcs (u, v) and (v, u). Observe that this construction also replaces an
edge between two coarse vertices with two arcs. For ease of exposition and w.l.o.g. we assume that the
vertex set Vc is chosen in a way such that Ac is a simple set: When (u, v) ∈ Ac is a multiarc then at least
one arc originates from a path that contains vertices from V \ Vc. By lifting one of these vertices to Vc
the resulting coarse network does not contain the corresponding arc anymore. For an arc (u, v) ∈ Ac, we
denote by Pf (u, v) the set of vertices from V \ Vc on the unique path between u and v.

Recall that the bidirectional graph of G is denoted by D = (V,A). The fine network is then given by
Df = (V,Af), where Af = A \Ac.

MIP Model For each v ∈ V we introduce the variable yv ∈ {0, 1} which is equal to 1 iff v is part of the
subgraph rooted in r. Every arc a ∈ Ac in the coarse network is associated with a flow variable x̂a ∈ R≥0.
Similarly, we introduce for every arc a ∈ Af the flow variable xa ∈ R≥0. The flow variables in the coarse
network are bounded from above by M = |V | − 1. Let (u, v) ∈ Af and (i, j) ∈ Ac such that v ∈ Pf (i, j).
We set the upper bound Muv to the maximum of the two shortest path distances from u to i and to
j, respectively. For simplicity, we assume that all leaves in G are part of the coarse vertices Vc. Note
that Muv is significantly smaller than the parameter M for the coarse flow. Now we can state the MIP
formulation for the coarse-to-fine flow (C2F):

yr = 1 (12a)∑
a∈δ−Dc

(v)

x̂a −
∑

a∈δ+Dc
(v)

x̂a −
∑

a∈δ+Df
(v)

xa = yv ∀v ∈ Vc \ {r} (12b)

x̂uv ≤ yv ·M ∀(u, v) ∈ Ac (12c)

x̂â + xa ≤ yw ·M ∀â ∈ Ac ∀w ∈ Pf (â) ∀a ∈ δ−Df
(w) (12d)∑

a∈δ−Df
(v)

xa −
∑

a∈δ+Df
(v)

xa = yv ∀v ∈ V \ Vc (12e)

xuv ≤ yu ·Muv ∀(u, v) ∈ Af : u ∈ Vc (12f)

xuv ≤ yv ·Muv ∀(u, v) ∈ Af : v /∈ Vc (12g)

yv ∈ {0, 1} ∀v ∈ V (12h)

x̂a ≥ 0 ∀a ∈ Ac (12i)

xa ≥ 0 ∀a ∈ Af (12j)

Observe that the C2F formulation has similarities to the SCF formulation (7). The coarse flow is handled
in the constraints (12b) and (12c). In the former constraints, every chosen coarse vertex consumes not only
one unit of flow, but also the cumulative fine flow that emerges from the vertex. The latter constraints
(12c) force the head of a coarse arc to be chosen if it has flow. Constraints (12d) ensure that with a coarse

12

arc a ∈ Ac all fine vertices of the set Pf (a) have to be chosen as well. The addition of the fine flow variable
in (12d) is not necessary but strengthens the LP relaxation. Constraints (12e) - (12g) handle the fine flow,
which is basically a SCF that can emerge at any coarse vertex. In order to activate a coarse vertex that
serves as a source for the fine flow, constraints (12f) are necessary.

Let us now study the C2F and SCF formulations from a polyhedral perspective. We show that the LP
relaxation for the C2F model is tighter than for the SCF. To this end, we denote by C and F the feasible
solutions of the LP relaxation of the C2F and SCF model, respectively, projected onto the y variables, i.e.,

C :=
{
y ∈ [0, 1]V

∣∣ ∃x̂ ∈ RAc

≥0 ∃x ∈ RAf

≥0 : (y, x̂, x) satisfy (12a) - (12g)
}
,

F :=
{
y ∈ [0, 1]V

∣∣ ∃x ∈ RA≥0 : (y, x) satisfy (7a) - (7c)
}
.

Proposition 1. Let G = (V,E) be a graph together with a root r ∈ V , and let Vc ⊆ V with r ∈ Vc and
V>2 ⊆ Vc be a set of coarse vertices, then

C ⊆ F .

Proof. The coarse-to-fine formulation is characterized by the set of coarse vertices, to avoid ambiguities
we call the polytope corresponding to the LP relaxation CVc . Let y ∈ CVc be a feasible solution and let

x̂ ∈ RAc

≥0 and x ∈ RAf

≥0 be flow values such that (y, x̂, x) satisfy (12a) - (12g). If Vc = V the coarse network
Dc is equal to D and no flow on fine vertices exists. Therefore, (y, x̂) satisfies (7a) - (7c) and y ∈ F .

Now we show that if Vc ⊂ V we can always lift a non-empty vertex set Pf (a) for a ∈ Ac to the coarse
network such that y ∈ CVc∪Pf (a). Let (u, v) ∈ Ac be any coarse arc with Pf (u, v) 6= ∅. The new coarse
network is D′c = (V ′c , A

′
c) where V ′c = Vc∪Pf (u, v) and A′c are the resulting coarse arcs from the procedure

described above. The resulting fine graph is D′f = (V,A′f) where A′f ⊂ Af contains no arc incident to

vertices in Pf (u, v). For the new flow vector of the fine graph x′ ∈ RA
′
f

≥0, we simply set x′a = xa for all

a ∈ A′f . In the new flow vector for the coarse graph x̂′ ∈ RA
′
c

≥0, we set any arc a ∈ A′c∩Ac to x̂′a = x̂a. Now
let (i, j) ∈ A′c ∩ Af be an arc on the corresponding directed path Puv from u to v. W.l.o.g. we assume
x̂uv ≥ x̂vu, and we set x̂′ij = x̂uv + xij − xji and x̂′ji = 0. In order to prove that y ∈ CVc∪Pf (a) we have to
show that (y, x̂′, x′) satisfies (12a) - (12g). Trivially, constraints (12a) and (12d) - (12g) are fulfilled. For
(12b) let w ∈ Pf (u, v), and i ∈ V ′c be the predecessor and j ∈ V ′c be the successor of w on Puv. Then∑

a∈δ−
D′c

(w)

x̂′a −
∑

a∈δ+
D′c

(w)

x̂′a −
∑

a∈δ+
D′

f
(w)

x′a

= x̂′iw + x̂′jw − x̂′wi − x̂′wj
= x̂′iw − x̂′wj
= x̂uv + xiw − xwi − x̂uv − xwj + xjw

= xiw − xwi − xwj + xjw

=
∑

a∈δ−Df
(w)

xa −
∑

a∈δ+Df
(w)

xa

= yv,

and (12b) is satisfied. Furthermore, constraint (12c) is satisfied as well because

x̂′iw = x̂uv + xiw − xjw
≤ x̂uv + xiw

≤ yw ·M.

13

r

yr = 1

u

yu = 1

v

yv = 0.5

w

yw = 1

xru = 2.5 xuv = 1.5 xvw = 1

Figure 1: Feasible solution of the LP relaxation of SCF (7). The y values, however, do not allow for a
feasible solution of C2F (12) with Vc = {r}.

We conclude that y ∈ CVc∪Pf (a), and we iterate this process until Vc = V .

The preceding result established that the C2F formulation is at least as tight as the SCF formulation.
Next we show that it is indeed tighter.

Proposition 2. In general, we do not have C = F .

Proof. Consider the fractional flow depicted in Figure 1. Since we have M = 3 for the SCF formulation (7),
yv = 0.5 is feasible. For the C2F model with Vc = {r}, on the other hand, we have Muv = 2, and hence
yv = 0.5 is not feasible anymore.

Our implementation of the C2F model differs from (12) in order to obtain a tighter bound on the big M
value for the coarse flow. By ignoring the fine flow in (12b) we achieve smaller values on the coarse flow
and can therefore set Mc = |Vc| − 1. More specifically, we replace the constraints (12b) - (12d) with the
following constraints:∑

a∈δ−Dc
(v)

x̂a −
∑

a∈δ+Dc
(v)

x̂a = yv ∀v ∈ Vc \ {r} (13b)

x̂uv ≤ yv ·Mc ∀(u, v) ∈ Ac (13c)

x̂a ≤ yw ·Mc ∀a ∈ Ac ∀w ∈ Pf (a) (13d)

3.3 Reduction Techniques for the Pricing Problem

When we consider a fixed root r, we might be able to eliminate certain parts of the network, or even
exclude r from the set of possible roots. In this section we investigate possibilities to reduce the size of
the pricing problem by applying different techniques during a preprocessing phase.

WU-radius A simple and yet effective method is to exclude all vertices that are not within distance WU

to r w.r.t. the node weights w. This can be done with Dijkstra’s algorithm on the bidirected version of G
where arc (u, v) has weight wuv := wv. The resulting graph is called the root graph for root r.

Minimum Separators For very sparse graphs, it might be useful to compute a minimum r-v-separator
S ⊆ V for every v ∈ V in advance, and to add the valid inequality

yv ≤ y(S)

to the respective IP. A minimum r-v-separator can be computed with a maximum flow algorithm. Hao and
Orlin [HO92] propose an implementation, where the computation time to compute minimum cuts from r
to all other nodes is comparable with the time to find a single minimum r-v-cut.

14

r

yr = 1

v

yv = 0.1

w

yw = 1

xrv = 1.1 xvw = 1

Figure 2: Feasible solution of the LP relaxation of (7) (single-commodity flow). The solution is not feasible
if inequalities (14) are added to (7).

Articulation Points A special case of these inequalities arises when S has only one element: an articulation
point. Lüthen [Lüt18] also followed this direction but found that there are too many cuts to add. We
concentrate on a subset of these that proves to be very useful. If {u} is an r-v-separator and uv ∈ E, then
the following inequality, which we call Articulation Point Neighborhood Cut (APNC), is valid:

yv ≤ yu. (14)

Note that if G is a tree, every node is an articulation point, and, as we have seen in formulation (11),
these inequalities then essentially describe the r-tree polytope (cf. [MW95]). However, we can also use
them to strengthen the LP relaxation of other connectivity formulations, as the example in Figure 2
shows. Moreover, all APNC can be computed efficiently, since articulation points can be enumerated by a
depth-first search [HT73].

Goemans [Goe94b] also exploits articulation points to facilitate connectivity requirements in rooted tree
problems: If v is an articulation point in a graph G with root r, then a (maximum weight) rooted tree
problem can be solved independently for any connected component of G \ v not containing r, by defining
v as the new root of this component. Since our templates are subject to weight bounds, however, this
approach does not carry over to the HCTCP.

Restricting Connectivity Formulations to the Core Graph If all APNC were added, we can further
simplify the graph. In particular, we create the core graph by removing all outer branches of the original
graph, i.e., we successively remove nodes of degree 1 unless the node is r. The APNC guarantee that any
chosen nodes in the removed part are connected to the core graph and that the respective articulation
node is chosen as well. Consequently, our IP connectivity constraints can be restricted to the core graph.
For very sparse, tree-like instances, which we mostly consider here, the restriction to the core graph proves
to have an enormous impact.

3.4 Exploiting the Median Property

The remainder of this section is dedicated to reductions under the assumption that r has (weighted) median
demand of the vertices of selected r-trees. All presented reductions translate to the median case, if we
consider the star penalty function instead of the weighted version (1). The presentation for the weighted
version, however, is more general.

Definition 3 (weighted median). Given elements d1 < · · · < dn with positive weights w1, . . . , wn and
Σw :=

∑n
i=1 wi, element dk is a weighted median of (d,w) if

k−1∑
i=1

wi ≤ Σw/2 and

n∑
i=k+1

wi ≤ Σw/2.

As for the median of an even number of values, the weighted median can be not unique. If one of
the inequalities is tight, there are two consecutive elements that satisfy the condition. In this case we
accept both elements as a weighted median. However, we do not accept any value inbetween the two. In
particular, we do not take the arithmetic mean of both values as the weighted median.

15

The next result implies that the root nodes have a weighted median demand in the corresponding
subgraph.

Proposition 4. Let d1 < · · · < dn and w1, . . . , wn > 0.
Then du is a weighted median of (d,w) iff u ∈ arg min

u∈[n]

∑
v∈[n]

wv |du − dv|.

Proof. Suppose that du is a weighted median of (d,w) and consider some j ∈ [n], w.l.o.g. j < u. Define
∆ := du − dj and note that ∆ > 0. Now,∑

v∈[n]

wv |dj − dv| −
∑
v∈[n]

wv |du − dv|

=

j∑
v=1

wv (dj − du) +

u−1∑
v=j+1

wv (2dv − dj − du) +

n∑
v=u

wv (du − dj)

≥ −∆

j∑
v=1

wv −∆

u−1∑
v=j+1

wv + ∆

n∑
v=u

wv

= ∆

(
n∑
v=u

wv −
u−1∑
v=1

wv

)
≥ 0.

Note that if the weighted median is unique, then the last inequality is strict. In the other case and if dj
is not a weighted median of (d,w), the first inequality is strict.

For our purpose it is not necessary that the elements are distinct. If multiple vertices have the same
demand, however, each of the vertices with weighted median demand minimizes the penalty function and
can serve as root of the subgraph at hand. Let us now formally define the problem of eliminating potential
root nodes.

Median Feasibility Problem

Instance: An HCTCP instance (G,w, d,WL,WU) and a node r ∈ V (G).

Problem: Is there a tree T ∈ TL,U , r ∈ T , for which dr is the weighted median of (d,w)?

The Median Feasibility Problem is NP-hard. The reduction from the Partition Problem in Section 2
also translates to this case. However, here we can also prove NP-hardness without exploiting the upper
weight bound. Therefore, we consider the following related problem.

Balanced Connected Subgraph

Instance: Graph G = (V,E), V = VR ∪̇VB , k ∈ 2N.

Problem: Is there a V ′ ⊆ V, |V ′| ≥ k, with |V ′ ∩ VR| = |V ′ ∩ VB | such that G[V ′] is connected.

Bhore et al. [Bho+19] show that the Balanced Connected Subgraph problem is NP-hard by a reduc-
tion from Exact-Cover-by-3-Sets. The problem remains NP-hard on simpler graph classes like planar or
bipartite graphs, and also if a specified vertex r is required to be chosen (Balanced Connected r-Subgraph).

Proposition 5. The Median Feasibility Problem is NP-hard, even without an upper weight bound WU .

Proof. The reduction is from Balanced Connected r-Subgraph. Given an instance (G,VR, VB , r, k), we
construct a Median Feasibility instance as follows. We add a node v∗ that serves as root node for the
Median Feasibility Problem, and the edge {rv∗} to G. Furthermore, we set w ≡ 1, dv∗ = 0, dv = 1 if

16

v ∈ VR, and dv = −1 if v ∈ VB , as well as WL = k + 1 which is an odd number. Note that any subgraph
with k + 1 nodes, for which v∗ has the (unit weighted) median demand, has the same number of VR and
VB vertices. Thus, the Median Feasibility instance has a solution if and only if the Balanced Connected
r-Subgraph instance has a solution.

Despite this complexity result, we can still simplify the instance or exclude potential roots. Our pre-
processing algorithm is based on two routines: one that discards nodes from the graph, and one that fixes
nodes. If we find that a node cannot belong to any feasible template rooted at r, we can remove this node.
Accordingly, if a node has to belong to any feasible template, we fix it. In order to detail both routines,
we define V <G := {v ∈ G : dv < dr}, and analogously, V =

G and V >G for a graph G with fixed root r. If the
considered graph G cannot be confused, we omit the subscript and write V <, V =, and V > instead. We
may also refer to the three sets as blue, white, and red nodes, respectively.

Lemma 6. Given an HCTCP instance (G,w, d,WL,WU) and a fixed root r, let

w<min :=
WL

2
− w(V =), w<max := min

(
WU

2
, w(V >) + w(V =)

)
,

w>min :=
WL

2
− w(V =), w>max := min

(
WU

2
, w(V <) + w(V =)

)
.

Then, any graph S ∈ TL,U for which r has the weighted median demand, satisfies

w(V <S) ∈ [w<min, w
<
max] and w(V >S) ∈ [w>min, w

>
max].

Proof. The bounds follow directly from the definition of the weighted median and the weight bounds on
feasible templates.

The preprocessing algorithm that exploits the median property is detailed in Algorithm 1. Our method
to discard nodes checks for vertices whose inclusion violates the upper weight bound on V < or V >. To
this end, we employ Dijkstra’s algorithm on the bidirected version of the current graph with special arc
weights, adjusted for the blue and red color class, respectively. Note that we ignore the weight of all fixed
nodes (cf. line 2). In return, we subtract the weight of fixed nodes of the color at hand from the upper
weight bound (cf. line 5).

In order to fix a node v, we consider the connected component C of r in G \ v. If C violates a lower
bound, this component cannot contain a feasible template and thus, we can fix node v to be part of any
solution. While this concept can be generalized to arbitrary (node separating) sets S, the implication that
at least one node from S has to be chosen is not as strong as fixing a single node. In our implementation we
precompute the articulation points of G and consider the nodes in a depth-first search order. Therefore, if
v is an articulation point we can efficiently deduce the color weights of the root component from the parent
node. If, in addition, the root component of G \ v is feasible, we do not have to consider any descendants
of v in the DFS tree.

Since the weight bounds may change when we remove nodes, and the set of fixed nodes impacts the
removal, it makes sense to repeat the procedures until a stable state is reached. Whenever the resulting
graph does not meet a lower weight bound, or when we removed a fixed node, we can deduce that node r
cannot have a (weighted) median demand in a feasible template (cf. line 18). Hence, we eliminate r from
the set of potential roots. For any of the remaining root nodes we can add the valid inequalities from
Lemma 6 to the respective MIP, i.e.,

w<min ≤ w(V <) ≤ w<max, w>min ≤ w(V >) ≤ w>max. (15)

17

Algorithm 1: MedianInducedPreprocessing

Input: HCTCP instance G, w, d, WL, WU ,
potential root r ∈ V (G)

Output: relevant subgraph G′ ⊆ G,
set V f of fixed nodes

1 Procedure discard nodes():
2 Consider bidirected version D of G with arc weights

w<(u,v) =

{
wv , if v ∈ V < \ V f

0 , else
and w>(u,v) =

{
wv , if v ∈ V > \ V f

0 , else
;

3 `< ← node distance labels to r from single source Dijkstra on (D,w<) ;
4 `> ← node distance labels to r from single source Dijkstra on (D,w>) ;

5 Remove nodes from G with w<(v) > w<max − w(V f ∩ V <) or w>(v) > w>max − w(V f ∩ V >) ;

6 Procedure fix nodes():
7 for v ∈ G \ r do
8 C ← connected component of r in G \ v ;
9 if w(V <C) < w<min or w(V >C) < w>min then

10 V f ← V f ∪ {v} ;

11 V f ← {r} ;
12 repeat
13 repeat
14 Determine V <, V =, V > and w<min, w

<
max, w

>
min, w

>
max ;

15 discard nodes() ;

16 until No nodes were removed ;

17 if w(V <) < w<min or w(V >) < w>min or V f 6⊆ V (G) then
18 return (∅,∅) ;
19 fix nodes() ;

20 until No nodes were fixed ;

21 return (G,V f) ;

3.5 Local Search

Recall that the reduced costs of subgraph S are p(S) := p(S) − π(S). We present a local search method
that aims at quickly identifying subgraphs of negative reduced costs by adding or removing single nodes
from an already promising subgraph. As such promising subgraphs we use all graphs that were found in
the current pricing optimization, since these already have negative reduced costs. In addition, we perform
the local search on all graphs that were used in the current solution of the restricted master problem,
i.e., trees T with xT > 0 in the optimal RMP solution. Note that due to complementary slackness, these
subgraphs have reduced costs of 0.

In order to find good modifications of a subgraph S, we have to recompute reduced costs of slightly
changed graphs, and are therefore particularly interested in the change of penalty. More specifically, given
a tree T ∈ TL,U with penalty p(T) and a node v, we need to efficiently determine p(T + v). Recomputing
the weighted median and recalculating the weighted sum of differences is inefficient. With more stored
information and suitable data structures, however, one can efficiently compute p(T + v) from p(T). We
refrain from the technical details of this method, and instead focus on a different approach. For a tree T
with weighted median demand d̂ and v /∈ T , we define the potential of v as ϕ(v) := wv |dv − d̂|, and note

18

that
p(T + v) ≤ p(T) + ϕ(v).

Thus, we overestimate the reduced costs as p̃(T +v) := p(T)+ϕ(v)−π(T +v). The error of this estimation

can be as large as w(T) |dv − d̂|, but shows to be small in practice if dv is close to d̂.
For the local search, we consider a tree T and two parameters k+ and k− ∈ N. Now we iteratively

determine the best k+ neighbors of T w.r.t. ϕ. For any of the 2k
+

subsets S+, we check if T + S+ is
feasible, and after checking with a prefix tree that the same set of nodes is not already part of the template
pool, we include it. Furthermore, we determine the best k− nodes in T that can be feasibly removed from
G[V (T)] (independently). Again, for every subset S−, we include any feasible, new graph T + S+ − S−
with negative reduced costs.

4 Computational Study

The goal of our computational study is threefold: We compare different formulations for connectivity in the
context of the presented covering problem, and we measure the impact of three algorithmic enhancements.
Finally, we compare the column generation approach to a compact districting model from [Seg+07] that
was implemented in [SRC11].

The computations for the HCTCP show that most of the time is spent solving the pricing problem.
Therefore, our methods aim to facilitate the pricing process. The optimization procedure with algorithmic
enhancements is depicted in Figure 3. The setting and the test instances are specified in Section 4.1. The
main results of our computational study are as follows:

Connectivity Formulations In Section 4.2 we find that among the four existing connectivity formulations,
single-commodity flow, multi-commodity flow, rooted arc separators, and rooted node separators, the
single-commodity flow offers the best overall performance. For most of the instances it performs best by
far, and for the other instances it is close to the best performance. This is particularly interesting since the
SCF formulation for connectivity seems to have been dismissed in the literature. The new coarse-to-fine
single commodity flow formulation, introduced in Section 3.2, performs even better on the instance set,
particularly on large instances.

Algorithmic Enhancements The impact of our proposed tuning methods is described in Section 4.3. In
particular, we examine the impact of the primal pricing heuristic based on spanning trees (cf. Section 3.1),

setup RMP,
setup PP

PP preprocessing

(cf. Section 3.4)
solve RMP

local search (LS)

(cf. Section 3.5)

solve RMP

solve PP
add

columns

yes

no

solve PP
heuristically

(cf. Section 3.1)

add
columns

no

yes

stop

LS

LS

Figure 3: Optimization procedure with all algorithmic enhancements (in yellow) integrated.

19

the center elimination preprocessing routine described in Section 3.4, and the local search outlined in
Section 3.5.

Our results show that each procedure is able to significantly reduce the computation time. The largest
effect is due to the heuristic solution of the pricing problem. Moreover, the improvements prove to be
essentially independent, leading to a multiplicative effect in the overall solution time.

Application to Districting We discuss in Section 4.4 how to adjust our column generation approach to
classical districting problems, and integrate it into a branch-and-price algorithm. We compare our new
algorithm to an exact and a heuristic model on 10 instances found in [SRC11]. While these instances have
unusual features that make it hard to find any feasible solution, our computational results show that our
approach is competitive.

4.1 Setting and Test Instances

We ran the experiments on machines equipped with Intel Xeon E3-1234 CPUs with 3.7GHz and 32GB
RAM. Our code is written in Python 3.6 and we used Gurobi 9.1 as LP and IP solver. We introduce a
time limit of 24 hours, and instances that terminate due to memory errors are set to the time limit. For
all experiments in Sections 4.2 and 4.3, we use the following setting:

We apply all reduction techniques from Section 3.3 except for the minimum separators. We found that
the articulation point neighborhood cuts (14) in combination with the restriction to the core graph are
especially helpful for our instances. In contrast to Section 4.4 we do not run a branch and price algorithm,
but only solve the root LP relaxation with column generation, and then solve the respective IP. Since
we are concerned with a covering problem, we do not encounter any feasibility issues. In addition, the
objective value of the root LP relaxation provides a lower bound for the optimal integer objective value.
Considering the 1857 successful runs, the average optimality gap was 0.7%. 1366 of these runs show a gap
of less than 1% and 876 runs finished with a provable optimal solution.

Regarding the test instances, we are originally concerned with network instances that constitute the
German motorway network. These instances stem from a research project on optimal truck toll control
with the German Federal Office for Goods Transport (cf. [BSS16; Bor+17]). In order to have more
instances, that can also be made publicly available, we generate two types of random transit networks with
artificial traffic volume that resemble the real-world instances: random trees, and random networks based
on Voronoi diagrams. The code for our transit network generator can be found in a GitHub repository1,
and the instances and instance-wise computational results are available in an online supplement2 to this
article. Typical instances for the three types are displayed in Figure 4.

In accordance with the districting literature, the HCTCP is formulated as a covering problem of weighted
vertices. The application, on the other hand, is focussed on the covering of weighted edges. Therefore, we
consider the line graph of every single transit network and, for clarity, we label these instances with lg.

German motorways The German motorway network is divided into 24 districts where local mobile control
teams patrol the network on predefined control sections. Homogeneous traffic within each control section
is an operative goal. Furthermore, the sections are subject to lower and upper length bounds. When
considering the line graph, the HCTCP models the problem of optimally designing the control sections.
The subnetworks are sparse and often tree-like. Denser networks can be found in the Ruhr area, but are
still planar and have a maximum degree of 4. The instances are grouped with respect to the magnitude
of the computation time for the single-commodity flow formulation without any heuristics into 4 groups:
tiny, small, medium, and large.

1https://github.com/stephanschwartz/transit_network_generator
2https://github.com/stephanschwartz/vertex_covering_with_capacitated_trees

20

https://github.com/stephanschwartz/transit_network_generator
https://github.com/stephanschwartz/vertex_covering_with_capacitated_trees

(a) German motorway,
region around Hanover

(b) Random tree (c) Voronoi network

Figure 4: Exemplary transit network instances for the three instance classes.

Table 1: Selected properties of considered instance sets: # denotes the number of instances in the respective
group, tw the treewidth, b [%] the average fraction of edges that are bridges, and p [%] the fraction
of instances that are planar. The values are associated with the actual instances, i.e., with the
line graphs of the described transit networks.

|V | |E| tw b [%] p [%]

ger lg tiny 7 117.9 138.1 3.0 53.4 100.0
ger lg small 7 162.3 207.0 3.6 33.6 57.1
ger lg medium 6 215.8 276.0 3.8 37.7 33.3
ger lg large 4 224.2 311.0 4.5 27.0 0.0

tree lg 25 199.0 242.6 2.8 46.9 100.0

voronoi lg medium 33 204.9 255.6 4.4 30.8 12.1
voronoi lg large 17 206.2 265.5 4.8 23.5 0.0

Random trees To mimic smaller instances of the German motorways, we consider 25 random trees. We
build a tree from random points in a rectangle by using Kruskal’s algorithm on the complete graph with
Euclidean edge weights. The assigned traffic is a combination of random origin-destination traffic and
traffic obtained by a gravity model.

Voronoi networks To mimic a denser transit network, we create a Voronoi diagram and consider the
graph that is spanned by the ridges between the Voronoi cells. This is our basic Voronoi graph with
Euclidean edge lengths. Now, we add additional random leaves, split the edges to obtain a specified
number of nodes, and stretch each edge by a random factor. The artificial traffic is generated as for the
random trees. We consider 50 of these instances that are split into two groups based on the computation
time of the SCF without any heuristics.

4.2 Connectivity Formulations

In order to compare the connectivity formulations, we implemented all described models from Section 3.1.
The single-commodity flow (SCF) and multi-commodity flow (MCF) implementations are straight forward,
and the coarse-to-fine flow (C2F) follows the presentation in Section 3.2.

For the rooted arc separators (RAS) we add all 2-cycle inequalities to the initial model. We tested
different threshold values to start the separation routine and found that separating only for yv > 0.999 led
to the best performance. Also, the adding of nested cuts and generalized subtour elimination constraints

21

Table 2: Average computation times (in seconds) for different connectivity formulations. Usage of the
pricing heuristic was disabled, the median preprocessing and the local search were enabled. Su-
perscripts denote the number of timeouts.

Instance set SCF MCF RAS RNS C2F

ger lg tiny 1.8 10.3 4.5 1.4 1.9
ger lg small 14.1 87.0 86.2 15.0 12.4
ger lg medium 77.4 684.2 407.3 116.8 54.0
ger lg large 1127.5 25525.21 23556.21 16211.6 760.4

tree lg 20.8 374.2 174.0 14.7 27.1

voronoi lg medium 2353.8 11652.7 8775.61 29095.95 900.5
voronoi lg large 8694.9 25419.4 36263.46 71480.910 2006.9

during the separation proved to have a significant impact. We did not include back cuts in the separation,
but tried to obtain minimum cuts of minimum cardinality by adding a small ε > 0 to every capacity before
computing a maximum flow. However, this proved to have a negative effect on the running time.

Concerning the rooted node separators (RNS), the separation of integer solutions (cf. [Fis+17]) was
better than the separation of fractional solutions (cf. [FF08; ÁMLM13b]). In addition, we use back cuts
to generate more valid inequalities.

Since we want to study the performance of the connectivity formulations, we disable the pricing heuristic
which would otherwise dominate the solution process. However, we enable the median induced prepro-
cessing and add further templates via local search. Various tests indicate that this does not impact the
validity of the results, while drastically reducing computation times.

Table 2 illustrates the performance of the different connectivity formulations associated with the HCTCP.
Among the four existing formulations, the single-commodity flow performs best on the whole instance set.
Concerning the ger lg and voronoi lg instances, the advantage over the other formulations is significant,
especially for larger instances. On the tree lg instances, the rooted node separators perform best, but
the SCF formulation is still competitive, in contrast to MCF and RAS. On the voronoi lg instances, the
RAS and MCF formulations are better than the RNS, but all three fall clearly short of the SCF. The RNS
formulations suffer the most timeouts (but no memory errors). All timeouts for the MCF and RAS, on
the other hand, were due to memory errors. For almost all instances that were not suspended, the RAS is
much faster than the MCF.

The newly introduced coarse-to-fine flow formulation performs even better than the SCF, especially
on larger instances. We developed the C2F model with regard to the real-world ger lg instances; the
voronoi lg instances were created later. It is all the more surprising that the impact on these instance
sets is even stronger. For one voronoi lg large instance, depicted in Figure 5, the solution time drops
from 18806 seconds (SCF) to 1888 seconds (C2F).

The coarse-to-fine approach is apparently particularly suited for hierarchical networks with a large
fraction of degree 2 vertices. This structure is typical for transit networks such as motorway networks or
public transport networks. Additional experiments suggest that the advantage of the C2F method rather
depends on the graph than on the traffic demand. In experiments with random demand on each vertex,
the C2F formulation was still far superior to the SCF.

22

Figure 5: The core graph of a voronoi lg large instance. Squares represent coarse nodes, i.e., vertices of
degree ≥ 3.

4.3 Algorithmic Enhancements

All of the applied techniques aim to reduce the time spent for the pricing optimization. In Table 3, we
report the impact of the different tuning methods with the SCF and C2F formulation, while the analysis
below is with respect to the SCF. However, we point out that the effects are similar for all connectivity
variants.

Most remarkable is that the three improvements are essentially independent, i.e., the reduction effects
multiply if combined. For instance, for the ger lg large instance set and the SCF formulation, all
improvements lead to a speed-up factor of 24.6, while the individual speed-up factors are 7.88 (pricing
heuristic), 1.59 (center elimination), and 2.27 (local search).

Pricing Heuristic The exact optimization takes most of the computation time. Therefore, we try to
find templates of negative reduced costs heuristically, and only call the exact optimization routine if none
are found. To this end, we solve the pricing problem as described in the last connectivity formulation in
Section 3.1, i.e., we use LP formulation (11) on a predefined spanning tree.

This approach significantly drops the number of calls to the exact optimization routine. Averaging over
all instances, we find a reduction by 85% compared to the version without the primal heuristic. In 17%
of the ger lg instances, in 100% of the tree lg instances and in 22% of the voronoi lg instances, the
exact optimization was only called once to prove optimality, i.e., the primal heuristic already produced
the optimal solution. Our comparison shows that the integration of the pricing heuristic has the largest
impact of the three improvements.

Median Induced Preprocessing Recall that during the pricing problem, we solve a single-rooted and
budgeted Maximum Weight Connected Subgraph problem for every potential root. Our median induced
preprocessing routine, described in Algorithm 1, has three potential benefits: First, it can eliminate
potential roots, which can be ignored in every pricing problem. Second, for the remaining roots, it can
also shrink the relevant subgraph by discarding irrelevant nodes, leading to smaller pricing problems. And
third, it can fix nodes to further simplify the pricing problems. Table 4 shows the effect of the preprocessing
on these three aspects.

On average, our algorithm is able to exclude over 40% of all vertices as potential roots for the ger lg

and tree lg instances, and over 20% for the voronoi lg instances. While this alone leads to a significant
reduction in computation time, the routine discards a considerable number of nodes in the relevant sub-
graph for the ger lg and tree lg instances, and is also able to fix a fair amount of the remaining nodes.
For the voronoi lg instances these effects are much weaker, and we can also observe in Table 3 that for
these instances the preprocessing has a smaller effect.

23

Table 3: Average computation times (in seconds) for the single-commodity flow and coarse-to-fine flow for-
mulation when including combinations of the pricing heuristic (H), median induced preprocessing
(P), or the local search (L).

SCF

Instance set --- --L -P- H-- -PL H-L HP- HPL

ger lg tiny 5.2 3.2 2.6 3.4 1.8 2.3 1.9 1.5
ger lg small 50.4 25.9 23.9 21.1 14.1 11.8 10.6 7.4
ger lg medium 341.3 188.1 176.3 81.3 77.4 49.5 42.8 25.7
ger lg large 4642.4 2043.6 2923.6 588.8 1127.5 287.9 410.7 188.7

tree lg 127.3 59.5 38.4 54.7 20.8 31.4 23.0 15.5

voronoi lg medium 5344.5 2930.6 4667.5 479.4 2353.8 313.5 394.4 235.7
voronoi lg large 18516.9 9956.4 17332.5 1403.5 8694.9 963.1 1140.5 701.7

C2F

Instance set --- --L -P- H-- -PL H-L HP- HPL

ger lg tiny 5.9 4.0 2.8 3.8 1.9 2.5 1.9 1.6
ger lg small 53.3 28.4 22.0 21.7 12.4 11.9 12.1 6.9
ger lg medium 212.3 132.2 117.4 95.4 54.0 41.8 36.3 22.5
ger lg large 3129.7 1248.3 1980.3 589.6 760.4 257.6 334.1 144.8

tree lg 150.7 74.1 51.6 54.4 27.1 32.0 22.5 15.0

voronoi lg medium 2208.3 1082.8 1895.6 300.9 900.5 197.0 241.9 143.1
voronoi lg large 4712.1 2027.5 4418.6 609.0 2006.9 412.4 549.9 309.0

Table 4: Effects of the median induced preprocessing.

Instance set roots eliminated [%] discarded [%] fixed [%]

ger lg tiny 44.2 38.2 24.1
ger lg small 44.0 36.5 15.5
ger lg medium 38.7 29.0 8.5
ger lg large 29.3 17.3 3.5

tree lg 42.0 39.1 10.9

voronoi lg medium 21.4 4.8 1.9
voronoi lg large 19.1 3.2 1.3

24

The overall impact of this preprocessing routine is still remarkable. For the tree lg instances it is even
the single improvement with the strongest impact. Adding the valid inequalties (15), however, did not
prove to have a substantial effect on the solution times.

Local Search The local search aims at generating promising template graphs in order to reduce the
number of iterations in the column generation. For the model introduced in Section 3.5 we opt for k+ = 6
and k− = 1, even though, for large problems, the choice of a larger k+, e.g., k+ = 10, was even better.
Furthermore, our computations show that it is most beneficial to apply the local search after solving the
restricted master problem (for each subgraph used in the optimal solution) and after the pricing (for each
subgraph with negative reduced costs). With this setup, the number of iterations drops by 50% on average
over all considered instances.

4.4 Application to Districting

In classical districting, we search for an optimal partitioning of a graph into a fixed number of districts.
Our model is designed for covering problems, and the number of districts is not fixed. Nevertheless, we
can adapt the IP model (2) for the HCTCP to the former setting: The covering constraints (2b) become
partitioning constraints by replacing the inequality sign with an equality sign. This leads to dual variables
without sign restriction, but the sign of the dual variables is irrelevant in the further course. Furthermore,
we add the additional constraint ∑

T∈TL,U

xT = k

in order to fix the number of templates. This constraint changes the objective function of the pricing
problem, but it remains a budgeted and rooted version of the MWCS. Therefore, the previously presented
methods are still applicable.

The only publicly available districting instances seem to be the commercial territory design instances
by Salazar-Aguilar, Ŕıos-Mercado, and Cabrera-Ŕıos [SRC11]. They consider the problem of partitioning
a graph, representing a geographic area, into a fixed number of business districts with certain properties.
The authors implement an exact and a heuristic model. The exact IP formulation, called Median-Based
Territory Design Problem (MTDP), was already proposed but not implemented in [Seg+07]. The con-
nectivity is ensured with a special set of node separator inequalities. As there are exponentially many of
these inequalities, the MTDP is solved with branch-and-cut. The heuristic approach is a reformulation of
the IP with quadratic terms. The resulting integer quadratic programming model, denoted by QMTDP,
is solved heuristically using DICOPT.

We apply the adapted HCTCP to all large instances with 200 vertices from [SRC11]. Apart from the
partitioning and the fixed number of templates, the main difference to our model is that the vertices have
three weights (instead of one) with tight lower and upper bounds on the cumulative weight. The tight
bounds and the partitioning make it much harder to find a feasible solution as a base for the restricted
master problem. To circumvent this problem, we make use of an artificial base by constructing an arbitrary
partitioning of the vertices, which may lead to templates that do not meet the requirements of a district.
However, we assign prohibitively large penalties to these templates, so that none of them is part of an
optimal solution. A similar method is used in [CGP19].

Since the integer version of the root LP has infeasibility issues, we implemented a branch-and-price
algorithm. The branching is done on the edges such that both endpoints are forced to be either in the
same or in different districts. After solving the LP relaxation of a branching node, we also solve the IP
version of the restricted master problem with all previously generated districts. If we obtain an integer
solution without templates from the artificial base we terminate.

25

Table 5: Comparison of the exact (MTDP) and heuristic (QTDP) solutions from [SRC11] to the first
feasible solution of the presented branch-and-price approach on instances from [SRC11].

Inst Objective value Gap [%] Time [s]

MTDP QMTDP B&P QMTDP B&P MTDP QMTDP B&P

1 10422.0 11523 10815.4 10.56 3.77 1116 28 185
2 10646.1 11425 11188.0 7.32 5.09 7200 966 1586
3 10846.8 11443 11200.6 5.50 3.26 1468 7200 4070
4 11122.0 11443 11747.9 2.89 5.63 7200 3618 2068
5 10878.1 11097 11492.8 2.01 5.65 7200 1193 678
6 10499.3 10746 10955.4 2.35 4.34 7200 1871 1981
7 11061.0 11686 11333.5 5.65 2.46 7200 1088 285
8 10659.5 11205 11015.7 5.12 3.34 2641 592 925
9 11470.3 11648 11792.6 1.55 2.81 7200 1263 1290

10 11043.8 11780 11158.7 6.67 1.04 1211 2349 896

The results of our comparison are shown in Table 5. We did not reimplement the MTDP and QMTDP,
but take the values from [SRC11]. Even though our approach is not designed for these problem types
or instances, we can see that our adaption of the HCTCP can compete with the existing models. In
particular, our B&P is the only approach that can solve all instances within the time limit (which was
specified in [SRC11]). With more running time, the branch-and-price approach can further narrow the
optimality gap. However, the benefit with the current implementation is questionable. The development of
specific heuristics to generate feasible templates would certainly lead to improvements, and is a potential
topic for further research.

5 Conclusions

In this paper, we studied a vertex covering problem with connected subgraphs that are subject to upper
and lower weight bounds. The objective of the covering is to use subgraphs that are as homogeneous as
possible, i.e., their vertices should be similar w.r.t. a given vertex weight.

We formulated the problem as an IP that is well suited for a column generation approach. The main
challenge is the pricing problem which turned out to be a variant of the Maximum Weight Connected
Subgraph Problem. We compared different connectivity formulations in terms of MIP, and found that
the single-commodity formulation offers the best overall performance. In addition, we proposed a new
flow formulation that is based on the coarse-to-fine paradigm, and that works particularly well for transit
networks (where many vertices have a degree of 2). We proved that the new formulation has a tighter LP
relaxation than the single-commodity flow. Our computational experiments on real-world and synthetic
transit networks also confirmed the practical advantage of the new model.

Complementary to the study of connectivity formulations, we proposed a number of preprocessing tech-
niques and a local search to facilitate the pricing problem. A newly introduced family of cuts, the Articu-
lation Point Neighborhood Cuts, proved to be very effective. At the core of the preprocessing is a method
that exploits the measuring of homogeneity in terms of a median vertex weight. The proposed algorithm
proved infeasibility for a significant number of variants, while simplifying most of the remaining problems.
It can also reliably solve the districting problems of [SRC11]; these are distinct in our test set in the sense
that they have a partitioning flavor. This provides evidence that our methods carry over to other graph
theoretic problems with connectivity restrictions.

26

References

[Ami+02] Steven J d’Amico, Shoou-Jiun Wang, Rajan Batta, and Christopher M Rump. “A simulated
annealing approach to police district design”. In: Computers & Operations Research 29.6
(2002), pp. 667–684.

[Ane80] Yash P Aneja. “An integer linear programming approach to the Steiner problem in graphs”.
In: Networks 10.2 (1980), pp. 167–178.

[BKN15] Mohamed Didi Biha, Hervé LM Kerivin, and Peh H Ng. “Polyhedral study of the connected
subgraph problem”. In: Discrete Mathematics 338.1 (2015), pp. 80–92.

[BSS16] Ralf Borndörfer, Guillaume Sagnol, and Stephan Schwartz. “An extended network inter-
diction problem for optimal toll control”. In: Electronic Notes in Discrete Mathematics 52
(2016), pp. 301–308.

[Bac+12] Christina Backes, Alexander Rurainski, Gunnar W Klau, Oliver Müller, Daniel Stöckel, An-
dreas Gerasch, Jan Küntzer, Daniela Maisel, Nicole Ludwig, Matthias Hein, Andreas Keller,
Helmut Burtscher, Michael Kaufmann, Eckart Meese, and Hans-Peter Lenhof. “An integer
linear programming approach for finding deregulated subgraphs in regulatory networks”. In:
Nucleic acids research 40.6 (2012), e43.

[Bea84] John E Beasley. “An algorithm for the Steiner problem in graphs”. In: Networks 14.1 (1984),
pp. 147–159.

[Bho+19] Sujoy Bhore, Sourav Chakraborty, Satyabrata Jana, Joseph SB Mitchell, Supantha Pandit,
and Sasanka Roy. “The balanced connected subgraph problem”. In: Conference on Algo-
rithms and Discrete Applied Mathematics. Springer. 2019, pp. 201–215.

[Bor+17] Ralf Borndörfer, Guillaume Sagnol, Thomas Schlechte, and Elmar Swarat. “Optimal duty
rostering for toll enforcement inspectors”. In: Annals of Operations Research 252.2 (2017),
pp. 383–406.

[Bul+16] Aydın Buluç, Henning Meyerhenke, Ilya Safro, Peter Sanders, and Christian Schulz. “Recent
advances in graph partitioning”. In: Algorithm engineering (2016), pp. 117–158.

[CCL06] Alysson Costa, Jean-François Cordeau, and Gilbert Laporte. “Steiner tree problems with
profits”. In: INFOR: information systems and operational research 44.2 (2006), pp. 99–115.

[CCY19] Huanfa Chen, Tao Cheng, and Xinyue Ye. “Designing efficient and balanced police patrol
districts on an urban street network”. In: International Journal of Geographical Information
Science 33.2 (2019), pp. 269–290.

[CG12] Chao-Yeh Chen and Kristen Grauman. “Efficient activity detection with max-subgraph
search”. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition. IEEE.
2012, pp. 1274–1281.

[CG95] Boris V Cherkassky and Andrew V Goldberg. “On implementing push-relabel method for
the maximum flow problem”. In: International Conference on Integer Programming and
Combinatorial Optimization. Springer. 1995, pp. 157–171.

[CGP19] François Clautiaux, Jeremy Guillot, and Pierre Pesneau. “Exact approaches for solving a
covering problem with capacitated subtrees”. In: Computers & Operations Research 105
(2019), pp. 85–101.

[CGR92] Sunil Chopra, Edgar R Gorres, and MR Rao. “Solving the Steiner tree problem on a graph
using branch and cut”. In: ORSA Journal on Computing 4.3 (1992), pp. 320–335.

27

[CHQ10] Kevin M Curtin, Karen Hayslett-McCall, and Fang Qiu. “Determining optimal police patrol
areas with maximal covering and backup covering location models”. In: Networks and Spatial
Economics 10.1 (2010), pp. 125–145.

[CR94] Sunil Chopra and Mendu Rammohan Rao. “The Steiner tree problem I: Formulations, com-
positions and extension of facets”. In: Mathematical Programming 64.1-3 (1994), pp. 209–
229.

[CS97] Geon Cho and Dong X Shaw. “A depth-first dynamic programming algorithm for the tree
knapsack problem”. In: INFORMS Journal on Computing 9.4 (1997), pp. 431–438.

[Car+13] Rodolfo Carvajal, Miguel Constantino, Marcos Goycoolea, Juan Pablo Vielma, and Andrés
Weintraub. “Imposing connectivity constraints in forest planning models”. In: Operations
Research 61.4 (2013), pp. 824–836.

[Con+07] Jon Conrad, Carla P Gomes, Willem-Jan Van Hoeve, Ashish Sabharwal, and Jordan Suter.
“Connections in networks: Hardness of feasibility versus optimality”. In: International Con-
ference on Integration of Artificial Intelligence (AI) and Operations Research (OR) Tech-
niques in Constraint Programming. Springer. 2007, pp. 16–28.

[DG10] Bistra Dilkina and Carla P Gomes. “Solving connected subgraph problems in wildlife con-
servation”. In: International Conference on Integration of Artificial Intelligence (AI) and
Operations Research (OR) Techniques in Constraint Programming. Springer. 2010, pp. 102–
116.

[Dit+08] Marcus T Dittrich, Gunnar W Klau, Andreas Rosenwald, Thomas Dandekar, and Tobias
Müller. “Identifying functional modules in protein–protein interaction networks: an inte-
grated exact approach”. In: Bioinformatics 24.13 (2008), pp. i223–i231.

[Duh+08] Christophe Duhamel, Luis Gouveia, Pedro Moura, and Mauricio Souza. “Models and heuris-
tics for a minimum arborescence problem”. In: Networks 51.1 (2008), pp. 34–47.

[EKK14] Mohammed El-Kebir and Gunnar W Klau. Solving the maximum-weight connected subgraph
problem to optimality. 11th DIMACS Implementation Challenge Workshop. 2014.

[FF08] Armin Fügenschuh and Marzena Fügenschuh. “Integer linear programming models for topol-
ogy optimization in sheet metal design”. In: Mathematical Methods of Operations Research
68.2 (2008), pp. 313–331.

[FG90] Jacques A Ferland and Gilles Guénette. “Decision support system for the school districting
problem”. In: Operations Research 38.1 (1990), pp. 15–21.

[FP88] Bernhard Fleischmann and Jannis N Paraschis. “Solving a large scale districting problem:
a case report”. In: Computers & Operations Research 15.6 (1988), pp. 521–533.

[Fis+17] Matteo Fischetti, Markus Leitner, Ivana Ljubić, Martin Luipersbeck, Michele Monaci, Max
Resch, Domenico Salvagnin, and Markus Sinnl. “Thinning out Steiner trees: a node-based
model for uniform edge costs”. In: Mathematical Programming Computation 9.2 (2017),
pp. 203–229.

[GG81] Bezalel Gavish and Stephen Graves. “Scheduling and routing in transportation and distri-
bution systems: formulations and new relaxations”. In: (1981).

[GM93] Michel X Goemans and Young-Soo Myung. “A catalog of Steiner tree formulations”. In:
Networks 23.1 (1993), pp. 19–28.

[GN70] Robert S Garfinkel and George L Nemhauser. “Optimal political districting by implicit
enumeration techniques”. In: Management Science 16.8 (1970), B–495.

28

[GVHS08] Carla P Gomes, Willem-Jan Van Hoeve, and Ashish Sabharwal. “Connections in networks:
A hybrid approach”. In: International Conference on Integration of Artificial Intelligence
(AI) and Operations Research (OR) Techniques in Constraint Programming. Springer. 2008,
pp. 303–307.

[Goe94a] Michel X Goemans. “Arborescence polytopes for series-parallel graphs”. In: Discrete Applied
Mathematics 51.3 (1994), pp. 277–289.

[Goe94b] Michel X Goemans. “The Steiner tree polytope and related polyhedra”. In: Mathematical
programming 63.1-3 (1994), pp. 157–182.

[HJ97] Pierre Hansen and Brigitte Jaumard. “Cluster analysis and mathematical programming”.
In: Mathematical programming 79.1-3 (1997), pp. 191–215.

[HO92] Jianxiu Hao and James B. Orlin. “A Faster Algorithm for Finding the Minimum Cut in
a Graph”. In: Proceedings of the Third Annual ACM-SIAM Symposium on Discrete Algo-
rithms. SODA ’92. Society for Industrial and Applied Mathematics, 1992, 165–174.

[HP94] Dorit S Hochbaum and Anu Pathria. “Node-optimal connected k-subgraphs”. In: manuscript,
UC Berkeley (1994).

[HS71] Sidney W Hess and Stuart A Samuels. “Experiences with a sales districting model: criteria
and implementation”. In: Management Science 18.4-part-ii (1971), P–41.

[HT73] John Hopcroft and Robert Tarjan. “Efficient Algorithms for Graph Manipulation”. In: Com-
munications of the ACM 16.6 (1973), pp. 372–378.

[Hes+65] Sidney Wayne Hess, JB Weaver, HJ Siegfeldt, JN Whelan, and PA Zitlau. “Nonpartisan
political redistricting by computer”. In: Operations Research 13.6 (1965), pp. 998–1006.

[Ide+02] Trey Ideker, Owen Ozier, Benno Schwikowski, and Andrew F Siegel. “Discovering regulatory
and signalling circuits in molecular interaction networks”. In: Bioinformatics 18.suppl 1
(2002), S233–S240.

[KLS91] Bernhard Korte, László Lovász, and Rainer Schrader. Greedoids. Vol. 4. Algorithms and
Combinatorics. Springer-Verlag, 1991.

[KLT15] Tung-Wei Kuo, Kate Ching-Ju Lin, and Ming-Jer Tsai. “Maximizing submodular set func-
tion with connectivity constraint: Theory and application to networks”. In: IEEE/ACM
Transactions on Networking 23.2 (2015), pp. 533–546.

[KM98] Thorsten Koch and Alexander Martin. “Solving Steiner tree problems in graphs to optimal-
ity”. In: Networks: An International Journal 32.3 (1998), pp. 207–232.

[KPH93] Bassam N Khoury, Panos M Pardalos, and Donald W Hearn. “Equivalent Formulations for
the Steiner Problem in Graphs”. In: Network Optimization Problems: Algorithms, Applica-
tions And Complexity. World Scientific, 1993, pp. 111–123.

[KR19] Jörg Kalcsics and Roger Z Ŕıos-Mercado. “Districting problems”. In: Location science.
Springer, 2019, pp. 705–743.

[KZ14] Hervé Kerivin and Jinhua Zhao. “Polyhedral study for the maximum bounded r-tree prob-
lem”. In: 2014 International Conference on Control, Decision and Information Technologies
(CoDIT). IEEE. 2014, pp. 140–145.

[LD96] Heungsoon Felix Lee and Daniel R Dooly. “Algorithms for the constrained maximum-weight
connected graph problem”. In: Naval Research Logistics (NRL) 43.7 (1996), pp. 985–1008.

[LD98] Heungsoon Felix Lee and Daniel R Dooly. “Decomposition algorithms for the maximum-
weight connected graph problem”. In: Naval Research Logistics (NRL) 45.8 (1998), pp. 817–
837.

29

[Lei+18] Markus Leitner, Ivana Ljubić, Martin Luipersbeck, and Markus Sinnl. “A dual ascent-based
branch-and-bound framework for the prize-collecting steiner tree and related problems”. In:
INFORMS Journal on Computing 30.2 (2018), pp. 402–420.

[Lju+06] Ivana Ljubić, René Weiskircher, Ulrich Pferschy, Gunnar W Klau, Petra Mutzel, and Matteo
Fischetti. “An algorithmic framework for the exact solution of the prize-collecting Steiner
tree problem”. In: Mathematical programming 105.2-3 (2006), pp. 427–449.

[Lju20] Ivana Ljubić. “Solving Steiner trees: Recent advances, challenges, and perspectives”. In:
Networks (2020).

[Lüt18] Hendrik Lüthen. “Partitioning into Isomorphic or Connected Subgraphs”. PhD thesis. Tech-
nische Universität, 2018.

[MJN98] Anuj Mehrotra, Ellis L Johnson, and George L Nemhauser. “An optimization based heuristic
for political districting”. In: Management Science 44.8 (1998), pp. 1100–1114.

[MLT95] Young-Soo Myung, Chang-Ho Lee, and Dong-Wan Tcha. “On the generalized minimum
spanning tree problem”. In: Networks 26.4 (1995), pp. 231–241.

[MR05] Thomas L Magnanti and S Raghavan. “Strong formulations for network design problems
with connectivity requirements”. In: Networks 45.2 (2005), pp. 61–79.

[MW95] Thomas L Magnanti and Laurence A Wolsey. “Optimal trees”. In: Handbooks in operations
research and management science 7 (1995), pp. 503–615.

[Mac87] Nelson Maculan. “The Steiner problem in graphs”. In: North-Holland Mathematics Studies.
Vol. 132. Elsevier, 1987, pp. 185–211.

[Nyg88] Bjørn Nygreen. “European assembly constituencies for wales-comparing of methods for solv-
ing a political districting problem”. In: Mathematical Programming 42.1-3 (1988), pp. 159–
169.

[PD01] Tobias Polzin and Siavash Vahdati Daneshmand. “A comparison of Steiner tree relaxations”.
In: Discrete Applied Mathematics 112.1-3 (2001), pp. 241–261.

[Pop09] PC Pop. “A survey of different integer programming formulations of the generalized mini-
mum spanning tree problem”. In: Carpathian Journal of Mathematics (2009), pp. 104–118.

[Pop20] Petrică C Pop. “The generalized minimum spanning tree problem: An overview of for-
mulations, solution procedures and latest advances”. In: European Journal of Operational
Research 283.1 (2020), pp. 1–15.

[RFK20] Daniel Rehfeldt, Henriette Franz, and Thorsten Koch. Optimal Connected Subgraphs: For-
mulations and Algorithms. Tech. rep. 20–23. Zuse Institute Berlin, 2020.

[RK19] Daniel Rehfeldt and Thorsten Koch. “Combining NP-hard reduction techniques and strong
heuristics in an exact algorithm for the maximum-weight connected subgraph problem”. In:
SIAM Journal on Optimization 29.1 (2019), pp. 369–398.

[RKM19] Daniel Rehfeldt, Thorsten Koch, and Stephen J Maher. “Reduction techniques for the prize
collecting Steiner tree problem and the maximum-weight connected subgraph problem”. In:
Networks 73.2 (2019), pp. 206–233.

[RSS13] Federica Ricca, Andrea Scozzari, and Bruno Simeone. “Political districting: from classical
models to recent approaches”. In: Annals of Operations Research 204.1 (2013), pp. 271–299.

[SC98] Dong X Shaw and Geon Cho. “The critical-item, upper bounds, and a branch-and-bound
algorithm for the tree knapsack problem”. In: Networks: An International Journal 31.4
(1998), pp. 205–216.

30

[SRC11] Maŕıa Angélica Salazar-Aguilar, Roger Z Ŕıos-Mercado, and Mauricio Cabrera-Ŕıos. “New
models for commercial territory design”. In: Networks and Spatial Economics 11.3 (2011),
pp. 487–507.

[Sch20] Stephan Schwartz. An Overview of Graph Covering and Partitioning. Tech. rep. 20–24. Zuse
Institute Berlin, 2020.

[Seg+07] JA Segura-Ramiro, Roger Z Ŕıos-Mercado, Ada M Álvarez-Socarrás, and Karim de Alba
Romenus. “A location-allocation heuristic for a territory design problem in a beverage dis-
tribution firm”. In: Proceedings of the 12th Annual International Conference on Industrial
Engineering Theory, Applications, and Practice (IJIE). 2007, pp. 428–434.

[Shi05] Takeshi Shirabe. “A model of contiguity for spatial unit allocation”. In: Geographical Anal-
ysis 37.1 (2005), pp. 2–16.

[VZ00] Yehuda Vardi and Cun-Hui Zhang. “The multivariate L1-median and associated data depth”.
In: Proceedings of the National Academy of Sciences 97.4 (2000), pp. 1423–1426.

[WBB17] Yiming Wang, Austin Buchanan, and Sergiy Butenko. “On imposing connectivity con-
straints in integer programs”. In: Mathematical Programming 166.1-2 (2017), pp. 241–271.

[Won84] Richard Wong. “Dual Ascent Approach for Steiner Tree Problems on a Directed Graph”.
In: Mathematical Programming 28 (Oct. 1984), pp. 271–287.

[Yam+09] Takanori Yamamoto, Hideo Bannai, Masao Nagasaki, and Satoru Miyano. “Better decom-
position heuristics for the maximum-weight connected graph problem using betweenness
centrality”. In: International Conference on Discovery Science. Springer. 2009, pp. 465–472.

[ZS05] Andris A Zoltners and Prabhakant Sinha. “Sales territory design: Thirty years of modeling
and implementation”. In: Marketing Science 24.3 (2005), pp. 313–331.

[ÁMLM13a] Eduardo Álvarez-Miranda, Ivana Ljubić, and Petra Mutzel. “The maximum weight con-
nected subgraph problem”. In: Facets of Combinatorial Optimization. Springer, 2013, pp. 245–
270.

[ÁMLM13b] Eduardo Álvarez-Miranda, Ivana Ljubić, and Petra Mutzel. “The rooted maximum node-
weight connected subgraph problem”. In: International Conference on AI and OR Tech-
niques in Constriant Programming for Combinatorial Optimization Problems. Springer.
2013, pp. 300–315.

[ÁMS17] Eduardo Álvarez-Miranda and Markus Sinnl. “A Relax-and-Cut framework for large-scale
maximum weight connected subgraph problems”. In: Computers & Operations Research 87
(2017), pp. 63–82.

31

	Introduction
	The HCTCP and a Column Generation Approach
	Solving the Pricing Problem
	Enforcing Connectivity in MIPs
	Coarse-to-Fine Flow Formulation
	Reduction Techniques for the Pricing Problem
	Exploiting the Median Property
	Local Search

	Computational Study
	Setting and Test Instances
	Connectivity Formulations
	Algorithmic Enhancements
	Application to Districting

	Conclusions

