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Abstract
We study the Flight Planning Problem for a single aircraft, where we look for a minimum cost
path in the airway network, a directed graph. Arc evaluation, such as weather computation, is
computationally expensive due to non-linear functions, but required for exactness. We propose
several pruning methods to thin out the search space for Dijkstra’s algorithm before the query
commences. We do so by using innate problem characteristics such as an aircraft’s tank capacity,
lower and upper bounds on the total costs, and in particular, we present a method to reduce the
search space even in the presence of regional crossing costs.

We test all pruning methods on real-world instances, and show that incorporating crossing costs
into the pruning process can reduce the number of nodes by 90% in our setting.
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1 Introduction

With a looming climate change and an ever more connected world, it is imperative that
aircraft routes are planned as efficient and efficiently as possible. Contrary to popular belief,
aircraft cannot fly directly between their origin and destination airports, but have to adhere
to the Airway Network, a directed graph. The nodes of the graph are called waypoints,
whereas the arcs are called (airway) segments. For vertical separation, aircraft are stacked
on 43 flight levels, which are mostly spaced 1 000 ft apart.

Airlines plan a flight by computing an optimal route according to their preferences, which
may include minimum fuel, minimum time, minimum cost (e.g., in USD), or a combination
thereof. Furthermore, one has to consider various overflight charges for countries, weight
dependent fuel consumption functions and weather-dependent arc lengths. Due to the
weather being time-dependent, this introduces an implicit time-dependency into the problem.
On top, some air navigation service providers publish restrictions to prevent congestion, such
as EUROCONTROL’s Route Availability Document[12].

The Flight Planning Problem as we will discuss it is the problem of finding a minimum
cost (in USD) trajectory given an origin and a destination airport, a departure time and a
weather forecast, an aircraft and its consumption functions, and overflight charges for each
country. Note that we take the airline’s point of view, and only consider one aircraft at a
time. A general introduction to this problem can for instance be found in [18]. We will in
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8:2 Pruning Search Spaces

the course of this paper disregard restrictions imposed by air navigation service providers
(ANSPs), as they can usually only be enforced on a given route. In particular, the Flight
Planning Problem as we see it is a base problem which may have to be solved a number of
times in order to obtain a valid flight plan.

In practice, a flight plan is compiled a few hours before the aircraft takes off. It is then
filed with ANSPs such as EUROCONTROL, who either accept or reject it. If rejected, it
must be recomputed to comply with additional restrictions; if accepted, however, it must be
flown as is, which requires the flight plan to be optimal – and discourages approximative
algorithms. Since flight plans may have to be recomputed following a rejection by ANSPs,
and since the base problem may have to be re-solved in order to obtain a solution which
satisfies restrictions, it is necessary that the base problem can be solved fast.

In this paper, we aim to reduce the a priori search space before the query commences.
To do so, we use a combination of upper and lower bounds in order to remove nodes from
the graph which provably cannot lie on an optimal path. Since many countries (especially
in Europe) allow more and more direct connections (so-called Free Route Areas) between
any two nodes within their boundaries, the underlying graph tends to become denser in the
future, which negatively affects runtimes.

1.1 Literature and Related Work
Reliant on a directed graph, the Flight Planning Problem shares similarities with the (Time-
Dependent) Shortest Path Problem on road networks. The best-known algorithm to solve
the non time-dependent version is Dijkstra’s Algorithm[8], which can be extended for the
time-dependent setting, see [10]. However, the time-dependent version of Dijkstra’s Algorithm
is only guaranteed to find an optimal solution if the FIFO property is satisfied; we say that
a function f : A× R+

0 satisfies the FIFO property, if

τ < τ ′ ⇒ f(a, τ) ≤ f(a, τ ′) + (τ ′ − τ).

This property basically states that overtaking is not possible by waiting at nodes. Many
speedup techniques for Dijkstra’s Algorithm exist for both the static and the time-dependent
version; [1] provides a good overview. While some such as A*[16] use potential functions to
guide the query at runtime, the methods which are most effective on road networks require
one or more preprocessing step. Contraction Hierarchies [15] (CHs) and its time-dependent
sibling Time-Dependent Contraction Hierarchies [2] (TCHs) assign ranks to the nodes, and
look for a shortest path through an in- and then decreasing sequence of nodes.

In [6], the authors show that TCHs do not perform as effectively on the airway network
graph as on road networks, being dominated both in preprocessing and in query times by A*.
The authors also introduce a novel technique for underestimating traversal times in the flight
planning problem. However, they do not consider overflight charges, which are a central
component of this paper.

Jensen et al. introduce a geometric algorithm to solve the Free Flight Problem [17]. They
partition any free flight airspace into rectangles of equal, constant wind. While similar to
Dijkstra’s algorithm, their method sorts nodes based not on their costs, but on the costs
of their cheapest successor, and lets nodes compete among each other for their successors,
thus achieving a speedup over Dijkstra’s Algorithm or A*. One has to note, however, that
their approach assumes airspace users can choose their waypoints freely. On the other hand,
we will assume that all waypoints and segments are defined, and that one is not allowed to
fly via self-defined waypoints. This represents the current point of view as expressed by air
navigation service providers such as EUROCONTROL [11].
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In terms of overflight charges or crossing costs, relatively little research has been conducted.
Most notably, Blanco et al. define and analyse the Shortest Path Problem with Crossing
Costs in [7], and solve a special case to optimality. In [5], the authors furthermore propose a
cost projection onto the arcs. Dreves and Gerdts [9] give an example on how to solve the
problem using optimal control, albeit in a bounded region in Europe. None of the works
cited deal with overflight charges considers the influence of weather. Both [6] and [5] only
run queries on one layer of the airway network, whereas we use the full (3D) graph for our
computations.

We seek to cut nodes with several different methods from the a-priori search space,
pruning all those nodes which provably cannot lie on an optimal path. A similar technique is
used in other applications of shortest path problems, e.g. in Electric Vehicle Routing [4], or
in the algorithm Approximated Time-Dependent Contraction Hierarchies [3].

Crossing costs pose a particular problem, in that they do not always correlate to the arcs
or nodes on the path, but rather depend on geometric information given by entry and exit
points for the given regions. While all of the presented pruning methods bear similarities to
A*, to the best of our knowledge, there is no known underestimator for regional crossing
costs of this particular type.

In section 2, we develop the theory on how to prune nodes prior to the query. Section 3
shows how to model the Free Flight Problem as a Time-Dependent Shortest Path Problem
with Crossing Costs. We develop several different pruning methods for the Free Flight
Problem in section 4, and show the results of real-world test cases in section 5.

2 Pruning Search Spaces in the Time-Dependent Shortest Path
Problem

In this section, we consider the Time-Dependent Shortest Path Problem (tdspp) defined as
follows: We are given a graph G = (V,A) together with a travel time function T : A×R+

0 →
R+

0 , which maps an arc a and the time τ at which it is entered to the travel time T (a, τ)
needed to traverse a. This function T will be one constituent of the total cost. For a path
P = (v0, . . . , vn) between two nodes v0, vn and a departure time τ0, we define the travel time
for P as

T (P, τ0) :=
n−1∑
i=0

T
(
(vi, vi+1), τi

)
,

where τi+1 = τi + T
(
(vi, vi+1), τi

)
for every i ∈ {0, . . . , n− 1}. We further impose that two

nodes s, t ∈ V exist, and seek to find the shortest path from s to t with respect to T , starting
at time τ0.

In [6], the authors show that in flight planning, A* outperforms even the most promising
speedup technique to Dijkstra’s Algorithm, Time-Dependent Contraction Hierarchies[2].
Since our pruning techniques in section 4 are similar to A*, we limit ourselves to the
discussion of pruning the search space for Dijkstra’s algorithm.

In this section, we concentrate on how to prune the search space for Dijkstra’s algorithm
before the query begins. To this end, we use both lower bounds on the arc costs as well as
an upper bound on the route costs. Usually, computing an upper bound on the route costs
is easy by just computing any feasible solution.

Let P ∗ be a minimum cost path s-t path starting at τ0, and c∗ := c(P ∗) its cost. We
assume that we are given an upper bound c on c∗, e.g., through a previously computed
feasible solution.

ATMOS 2019



8:4 Pruning Search Spaces

I Theorem 1. Assume we are given a tdspp as defined above, and an upper bound c on the
costs for a shortest path between s and t. Let cts : V → R+

0 be a function which underestimates
the costs for a shortest s-t-path via v. Any node v ∈ V which violates the pruning inequality

cts(v) ≤ c

cannot lie on an optimal path.

Proof. Let P ∗ be an optimal path, and assume that v ∈ P ∗ violates the pruning inequality,
so there exists a shortest s-t-path Pv via v such that c(Pv) > c. Then we find

c∗ = c(P ∗) ≥ c(Pv) > c,

contradicting the assumption that P ∗ was optimal to begin with. J

I Remark 2. In practice, we obtain a function cts(v) as required in the above theorem by
computing a lower bound function c : A→ R+

0 such that

c(a) ≤ c(a, τ) ∀τ ∈ R+
0 .

This approach is common for shortest path problems (e.g. for A* or ALT, see [1]), and is
also used in [6]. We write G := (G, c), and run a one-to-all Dijkstra from s and an all-to-one
Dijkstra to t on G. Note that G carries static arc costs, hence we can grow the Dijkstra trees
in O(|A|+ |V | log |V |).

If any node v ∈ V is not contained in either of the two trees, it cannot be reached from s,
or cannot reach t. In both cases, it can safely be eliminated, as it cannot lie on any optimal
path. If a node v ∈ V is not contained in both the forward and the backward tree, we will
assume its respective costs to be ∞.

Theorem 1 states that any path whose lower-bound costs are already higher than a
pre-computed upper bound cannot be optimal. Note that this mimics the A* algorithm[16].
The key difference is that by using Theorem 1, nodes which cannot lie on an optimal path are
eliminated a priori, rather than being discarded during the search. This means that it is a
little weaker than A*: for any node v ∈ V , the latter adds an estimate of the remaining costs
from v to t to the actual costs c(P vs ) from s to v, and sorts the node in the heap accordingly.
Contrastingly, when applying Theorem 1, one adds two cost estimates and compares them
to an upper bound. Unless the estimate is perfect, this leads to a gap between c(P vs ) and
c(P vs ). However, in practice it might be easier to compute an underestimation for the costs
of a complete path, rather than just parts of it. Also, a pre-pruned search space can be
advantageous for search algorithms which do not maintain a heap structure; e.g., by sorting
the graph’s nodes in topological order and run a search algorithm exploring the resulting
node groups in their respective order.
I Remark 3. The applicability of Theorem 1 is dependent on both the quality of the lower
bound as well as the quality of the upper bound solution. Clearly, lowering the upper bound
will result in more nodes being eliminated, as will raising the lower bound.

As shown by Fredman et al.[14], the runtime for the static Dijkstra’s Algorithm is
O(|A| + |V | log |V |) when a Fibonacci heap is used to store the unprocessed labels. The
dynamic, i.e., time-dependent case with FIFO travel time functions can be solved using
almost the same version of the algorithm [10]. The only difference is the evaluation of the arcs’
cost: in the static case it can be in constant time but in the dynamic case the complexity of
the evaluation depends on the shape of the functions [13]. This is why, even in the FIFO case,
it is not guaranteed that the tdspp is polynomially solvable and this is also the motivation
for a restriction of the search space before the query commences.
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3 Modelling the Free Flight Problem

We model the Free Flight Problem as a Time-Dependent Shortest Path Problem with
Crossing Costs, or t-sproc for short. As the name suggests, we introduce crossings costs
to the Time-Dependent Shortest Path Problem to account for overflight charges. We proceed
as follows:

We consider the airway network as directed graph G = (V,A), and origin and destination
airport as distinct nodes s and t in V . Each flight starts at a departure time τ0 ∈ R+

0 . In
our application, the cost functions comprises three components, to wit, the fuel costs, the
time costs, and overflight costs. Fuel costs are defined by what an aircraft burns en route,
while overflight costs are charges raised by countries’ air navigation service providers. Time
costs, on the other hand, comprise leasing costs, crew costs, and maintenance costs, and can
in our case be considered a linear function of the time en route. Hence, we can think of time
costs as being charged per arc, and introduce the time cost function

ct : A× R+
0 → R+

0

(a, τ) 7→ α · T (a, τ).

Fuel costs depend linearly on how much fuel an aircraft burns en route. The fuel burn is
directly proportional to the distance relative to the surrounding air mass, or air distance. As
in [17, 6], we assume that an aircraft flies with constant speed, which in turn renders the air
distance proportional to the time en route. Therefore, we can again think of fuel costs as
being charged per arc, and write

cf : A× R+
0 → R+

0

(a, τ) 7→ β · T (a, τ).

Both fuel and time costs naturally depend on the travel time, which in turn is weather-
dependent. We use the same travel time functions as given [6], assuming that weather is
given for a discrete point set ∆ ⊂ R+

0 in time over a long enough interval to cover all flight
durations. Usually, the break points are three hours apart; for any τ /∈ ∆, we interpolate the
closest two weather data objects to obtain a wind vector w(a, τ) for an arc a ∈ A. It can be
decomposed into its cross wind component wc(a, τ) perpendicular to the direction of flight,
and a track wind component wt(a, τ) parallel to it. Together with the constant air speed,
this leads to the travel time (c.f. [6, 17])

T (a, τ) = `(a)√
v2 − w2

c (a, τ) + wt(a, τ)
,

with `(a) denoting the length over ground of the arc a ∈ A. In particular, our travel time is
a non-linear function in prevailing the wind conditions.

Since both fuel and time costs are defined arc wise, we aggregate both functions into a
single arc-based and time-dependent cost function cA : A× R+

0 → R+
0 , defined as

cA : A× R+
0 → R+

0

(a, τ) 7→ cf (a, τ) + ct(a, τ).

ATMOS 2019



8:6 Pruning Search Spaces

For the definition of crossing costs for regions, we will closely follow the notation presented
by Blanco et al. in [7]. We write δ+(v) for out-arcs and δ−(v) for in-arcs of the node v,
and define δ(v) := δ+(v) t δ−(v). We assume that the arcs are partitioned into a set R
of k regions

A = R1 tR2 t . . . tRk,

and we call v ∈ V an inner node of Ri if a ∈ Ri for all a ∈ δ(v). Stretching notational
limits, we will also write v ∈ Ri for an inner node v of Ri.

If, conversely, a /∈ Ri for all a ∈ δ(v), we call v an outer node. All nodes which are
neither inner nor outer nodes are called boundary nodes, and we write v ∈ ∂R. We count
airport nodes as boundary nodes. We emphasise that regions must not overlap arc-wise, yet
they may share a common boundary. Without loss of generality, arcs do not cross more
than one region: if an arc a ∈ A did, we could subdivide it and insert a new boundary node
at the border.

Write t(P ), h(P ) for the first (or tail) and last (or head) node of a path P , and let SR(P )
denote the set of arc-maximal sub-paths of P in a region R ∈ R. Then, for a sub-path
p ∈ SR(P ), its tail t(p) and head h(p) are both elements of ∂R. We will denote the union of
all boundary nodes by

B := {b ∈ V : b ∈ ∂R for some R ∈ R} ∪ {v ∈ V : v is an airport}

=
⋃
R∈R

∂R ∪ {v ∈ V : v is an airport}.

Assume a metric d : V × V → R+
0 . In our application, the natural metric arising from

embedding G = (V,A) on a spherical earth model is the great circle distance (gcd). We
write Pts for the set of all s-t paths. For a non-decreasing function fR : R+

0 → R+
0 we can

now define the crossing costs cRo : Pts → R+
0 for a region R and an s-t-path P as

cRo (P ) :=


fR

 ∑
p∈SR(P )

d
(
t(p), h(p)

) if R ∩ P 6= ∅,

0 if R ∩ P = ∅.

Note that these costs do not rely on the time τ0 at all. We can now define the Time-Dependent
Shortest Path Problem with Crossing Costs (for short: t-sproc) as follows:

Input: A directed graph G = (V,A), nodes s, t ∈ V , a departure time τ0 ∈ R+
0 , an

arc-based cost function cA : A × R+
0 → R+

0 , and a crossing cost function co : Pts → R+
0 as

defined above.
Objective: Find an s-t-path P starting at τ0 which minimises

c(P, τ0) :=
n−1∑
i=0

cA
(
(vi, vi+1), τi

)
+
∑
R∈R

cRo (P ). (1)

I Remark 4. t-sproc is an extension of tdspp. Clearly, the first sum constitutes the
time-dependency, whereas the second one accounts for the crossing costs. Especially, if
cRo (·) ≡ 0, we re-obtain the tdspp. Also, note that while the crossing costs co are not
time-dependent, they are not defined per arc. This obvious difference to tdspp poses an
additional challenge.
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We have shown in [19] that under certain conditions, the wind functions in our application
satisfy the FIFO property; we will for the remainder of this paper presuppose the FIFO
property for cA. Blanco et al. developed the Two-Layer-Dijkstra algorithm in [7], which
solves the shortest path problem with crossing costs to optimality in polynomial time.

We also observe that Theorem 1 requires an underestimation function for all nodes v ∈ V .
Since we cannot even evaluate the crossing costs for non-boundary nodes v ∈ V \ B, we
cannot apply Theorem 1 to t-sproc directly. However, since overflight charges are always
non-negative, we can underestimate the function co by zero.

4 Preprocessing in Practice

In order to have as low runtimes as possible, we aim to prune the a-priori search space for the
Flight Planning Problem. Regardless of which pruning algorithm we choose, the objective
function will always be given by (1).

4.1 Dead-End elimination
We can pre-eliminate any nodes which either cannot reach t or cannot be reached from s. This
can be done in O(|V |+ |A|), as it suffices to run one forward breadth-first search from s and
one backward breadth-first search from t. This pruning method is plainly graph-theoretical,
and removes cul-de-sac nodes from the graph. We will compare all other pruning methods to
this baseline both in terms of runtime and in terms of nodes in the search space.

4.2 The Tank-Capacity Pruning
This pruning method is the most intuitive one. Aircraft clearly cannot burn more fuel than
they can carry with them; since fuel burn is proportional to the flight time, this means that
there is an inherent maximum flight time for aircraft based on their tank capacity. Let Φ
denote the maximum fuel which the aircraft can carry, and ϕts(v) the fuel consumption on a
shortest path from s to t via v.

To underestimate ϕts(v) for a node v ∈ V , we use the Super-Optimal Wind as introduced
by Blanco et al. in [6]. The Super-Optimal Wind for an arc a ∈ A is an artificial wind
vector which never underestimates the travel time for an arc a ∈ A arising out of an actual
wind conditions. Given a ∈ A, it is obtained by separately minimising the cross wind and
maximising the track wind, leading to the artificial wind vector

w(a) = (wc(a), wt(a)),

where wc(a) := minτ∈R+
0
|wc(a, τ)| and wt(a) := maxτ∈R+

0
wt(a, τ). Note that one can obtain

better lower bounds by computing the Super-Optimal Wind wi(a) per τi, τi+1 ∈ ∆. For a full
discussion of the topic, we point the reader to [6]. As stated in the same work, Super-Optimal
Wind can be pre-computed independent of the instance in a few seconds for all arcs a ∈ A.

We create a lower-bound graph (G, l), by computing the Super-Optimal Wind vector
for each arc a ∈ A. This wind corresponds to a minimum air distance li(a) for each arc
a ∈ A and a given wind prognosis time τi ∈ ∆. Given an upper bound on the travel time
(e.g., through a previously computed solution), we can determine τk0 , τkj ∈ ∆ such that the
entire flight is in [τk0 , τkj

]. Hence, setting

l(a) := min
i∈{k0,...,kj}

li(a)

ATMOS 2019



8:8 Pruning Search Spaces

provides an effective lower bound on the air distance for the entire flight. We then run a
one-to-all-Dijkstra from s and an all-to-one-Dijkstra to t on (G, l). Then, for any node v ∈ V ,
we obtain the minimum distance lts(v) from s to t via v by setting

lts(v) := l(s, v) + l(v, t),

where l(u,w) denotes the length of a shortest path from u to w in G, with respect to l. This
value is a lower bound on the wind-corrected distance between s and t. We convert lts(v) to
fuel consumption by assuming an optimal flight profile on the given air distance, to obtain a
lower bound ϕt

s
(v) on the fuel consumption via v. Whenever ϕt

s
(v) exceeds the tank capacity

Φ, we can eliminate v from the search space. Note that while this is similar to Theorem 1,
we do not rely on a precomputed upper bound; rather, the tank capacity is implicit in the
input data. Since all arc costs are static, we can compute this lower bound for every node in
O(|A|+ |V | log |V |).

4.3 Fuel and Time Pruning
Since both fuel and time costs are defined arc-wise, it makes sense to use both to create an
arc-based underestimation – we will in this subsection underestimate crossing costs by zero.

Underestimations for time costs are easier to obtain than for fuel costs. We again make
use of the Super-Optimal Wind: by employing the same strategy as above, we can obtain
a lower bound T ts(v) on the travel time between s and t via any node v. As it turns out,
both computations can be done in a single step by using that air distance and travel time
are proportional via the constant air speed. Since we assume time costs ct(P ) for a path P
to be a linear function in the travel time, they are very easy to underestimate: in fact, the
costs for the underestimated travel time are a good underestimation of the actual time costs.
We define

ct(v) := ct
(
T (s, v) + T (v, t)

)
Hence, given an upper bound solution with cost c, the pruning inequality given in Theorem
1 evaluates to

cf (v) + ct(v) =: cA(v) ≤ c, (2)

and we can eliminate any node v ∈ V which violates it. This is essentially the application of
Theorem 1 to the time-dependent part of t-sproc, with crossing costs underestimated by
the constant zero function. As in the tank capacity case, all data is static. In particular, we
can compute this lower bound at the cost of Dijkstras, namely in O(|A|+ |V | log |V |).

4.4 Pruning Crossing Costs
The problem with the method presented in the previous section is that although we use
the upper bound cost comprising crossing costs, we only sensibly underestimate the fuel
and time components (i.e., the time-dependent part of t-sproc). The crossing costs are
underestimated by zero. While still a valid underestimation, overflight charges may account
for up to one fifth of the total route costs, depending on the aircraft type. This already
justifies the incorporation of these charges into our underestimation.

Overflight charges were already investigated in [5], where the authors project crossing
costs for regions on the arcs using a heuristic which works very well in practice, but cannot
guarantee an underestimation. Instead, we are going to pursue an exact solution. In [7],
Blanco et al. introduce a macro graph which they use to keep track of the overflight costs. We
will mimic this construction, and use the macro graph to underestimate the overflight costs.
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So far, all cost components could be computed as a sum of individual arc costs. Recall
that as per the definition, crossing costs are not defined per arc, but are only given at the
boundaries of regions. Hence, sensible pruning can only occur at these boundaries. The idea
is to eliminate as many boundary nodes as possible, and then prune the search space further
by running an additional fuel/time pruning on the reduced search space.

Since crossing costs are not time-dependent, we can precompute a lower bound on them
by constructing a new graph M = (V ′, A′). We define this macro graph M as in [7]:

V ′ := {v ∈ V : v ∈ ∂R ∩ ∂R′ for some R,R′ ∈ R} ∪ {v ∈ V : v is an airport},

i.e., the new nodes are all boundary nodes of the regions. We also count airport nodes as
boundary nodes, to allow for crossing costs for flights beginning or ending in the interior of
a region. While instead of all airports it would suffice to only add s and t (as done in [7]),
our more general definition has the advantage of being independent of the instance. We can
hence reuse the same graph structure for all flight instances.1 We then set

A′ := {a = (u, v) ∈ 2V
′
: ∃P = (u, n1, . . . , nk−1, v) such that u, v, ni ∈ R ∀i}.

In other words, we insert an arc between two boundary nodes of R whenever there is a
path connecting them which is entirely contained in R. We then endow M with the (not
time-dependent) metric function d as defined in section 3. The macro graph for a set of
airspaces is depicted in Figure 1.

N
N

N
N

N

N

N

N

N

N
N

N

N

N

N

N

4

4

Figure 1 Macro graph with two airports in the gray regions.

Note that for all boundary nodes b ∈ B, the value

co(b) := co(s, b) + co(b, t)

is not only a lower bound on the crossing costs, but the actual crossing costs co(b) via b. In
particular, by running a one-to-all Dijkstra from s and an all-to-one Dijkstra to t, we can
obtain the actual crossing costs from s to t via each b ∈ B. By construction, |A′| ∈ O(|V ′|2),
which means that running the Dijkstra algorithms takes at most O(|V ′|2).

We observe that a route which minimises the crossing costs need not be optimal in
terms of the total costs – the minimum crossing costs c∗o between s and t are always a lower
bound on the actual crossing costs co(P ) for any s-t-path P . This means that we can safely
underestimate the crossing costs by c∗o instead of zero, without losing optimality in the
ensuing query – thus raising the lower bound by a significant amount. This leads to the
following procedure:

1 While our definition is very similar to the one in [7], the authors use it to solve the shortest path problem
with crossing costs to optimality, whereas we use it to prune the search space.
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8:10 Pruning Search Spaces

1. Deactivate all boundary nodes b ∈ B for which c < cA(b) + co(b). Just as for bidirectional
Dijkstra[1], observe that whenever the fringes of both the one-to-all tree and the all-to-one
tree meet at a node b, we obtain a candidate co(b) for the minimum overflight costs
between s and t. The total minimum overflight costs

c∗o = min
b∈B

co(b)

are therefore a natural byproduct of this step.
2. Lower c to c′ := c − c∗o (this is equivalent to raising the lower bound by c∗o).
3. Run fuel/time pruning on the reduced search space with the upper bound c′.

Through this procedure, we use the influence of overflight charges twice: first in actively
removing boundary nodes, second by lowering the upper bound for the ensuing fuel/time
pruning.

4.5 Pruning in Practice
The airway network is designed as a directed graph on the Earth’s surface and the flight
levels can be thought of as distinct, interconnected layers of this graph. To quicken the
preprocessing step, we only consider the base layer of the airway network: we set an arc’s
underestimated length to the minimum lower bound length over all flight levels on which the
arc is defined. This may weaken the effect of the pruning algorithms, but does not affect
correctness. We use this procedure in our computations.

5 Computational Results

Both the Airway Network and the instance data were provided by Lufthansa Systems. The
graph consists of 109 314 nodes and 838 114 arcs per level, on 43 such flight levels. The
instance set consists of the 7 735 most often flown international connections, based on week
21 of 2014.2 We limit ourselves to international relations only, since for some countries such
as the US, overflight charges do not apply for domestic flights.

All considered flights connect cities which are at least 1 000 km apart on the great circle
between the two cities; due to the structure of the Airway Network, instances with airports
closer to each other do not benefit much from nuances in pruning algorithms.

We implemented all algorithms explained in Section 4 in C++ within our flight planning
tool. We compiled the code with GCC, and all our tests were carried out on machines with
132GB of RAM, and an Intel(R) Xeon(R) CPU E5-2690 v4 processor with 2.60GHz and
35.8MB of cache. Queries were run in single-thread mode.

We will measure the quality of the pruning methods by comparing runtimes and the
number of active nodes before pruning to afterwards both absolutely and relative to dead-end
elimination, which will act as our baseline. A higher number always indicates a more effective
method. The advantage of counting active nodes is that the speedup is purely algorithm-
but not implementation-dependent. For a fixed instance, we will keep the same upper bound
solution for each underestimator for all pruning algorithms. The names for the different
pruning methods found in this section are listed in Table 1.

2 single trip – only one direction is represented in the instance set.
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Table 1 Pruning methods.

dead end dead end elimination
tank cap tank capacity pruning
fuel time fuel/time pruning

fuel time ofc fuel/time/overflight costs pruning

We investigate three different scenarios: we use two different weather prognoses, six
months apart (wth-16 and wth-17), and in a third case investigate the situation where there
is no wind at all. This gcd case highlights the potential for fuel time ofc pruning while
eliminating unpredictable effects introduced by the wind. The absolute runtimes for each
scenario, averaged over all 7 735 connections, are presented in Table 2.

Table 2 Average Query Times per Weather.

dead end tank cap fuel time fuel time ofc

Weather runtime
(s)

nodes
(#)

runtime
(s)

nodes
(#)

runtime
(s)

nodes
(#)

runtime
(s)

nodes
(#)

wth-16 44.01 31 115 33.70 9 213 15.05 4 125 10.38 3 042
wth-17 44.61 31 120 33.61 9 151 14.89 4 057 10.11 2 963
gcd 17.42 31 123 12.81 8 673 5.50 3 541 3.41 2 391

Recall that we investigate the base problem in flight planning, that of finding a 3D
trajectory. Note, too, that we may have to recompute a solution given new restrictions
imposed by ANSPs. With this in mind, it is imperative that each instance can be computed
as fast as possible. To this end, we compare the query time of Dijkstra’s Algorithm after
applying tank cap, fuel time, and fuel time ofc pruning to the query time after using
only dead end. For each of the more than 7 000 flights, the speedup is recorded both
absolutely and relatively, averaged over the instances, and then summarised for the current
weather situation. Note that this approach is possible since our runtimes are in the order of
seconds rather than milliseconds, which yields comparatively stable runtime measurements.
The previous table already indicates the results, but we also visualise them in Figure 2.

TANK CAP FUEL TIME FUEL TIME OFC
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Figure 2 Absolute runtime reduction (left) and averaged relative speedup per instance (right),
visualised per test set.
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One can see that tank cap pruning yields a speedup factor close to 1.3, fuel time
pruning a factor of almost 4, and fuel time ofc pruning a relative speedup of just under 7
for the weather-dependent instance sets.

To highlight the quality of the respective pruning algorithms, we also recorded the absolute
and relative reduction of nodes in the search space, which is only dependent on the pruning
method but not on its implementation. The results are presented in Table 3. Recall that
even though our computations took place in the full 3D setting, our pruning methods work
on the projection of the graph onto a 2D layer. Hence, it makes sense measure the reduction
of the search space in terms of deactivated 2D nodes.

Table 3 Average 2D Search Space Reduction Per Instance.

tank cap fuel time fuel time ofc
Weather absolute % absolute % absolute %
wth-16 21 900 70.84 26 988 87.40 28 071 90.94
wth-17 21 969 71.03 27 063 87.60 28 157 91.18
gcd 22 448 72.45 27 581 89.11 28 731 92.85

As one would expect, fuel time ofc pruning is the most effective method. Applying
fuel time ofc pruning to the search space yields a reduction of more than 90% of the
active nodes. This reduction is also visible in terms of the average query time speedup, which
is even ≈ 1.72 times better than with the second best method, fuel time pruning. While
the tank cap pruning is not quite as effective as the other methods, its inherent advantage
is that it does not rely on an upper bound solution. Indeed, the upper bound is given by
the input in terms of the aircraft’s tank capacity, which renders it a computationally light
alternative – or a fallback method in case one cannot find a reasonable upper bound solution.

It becomes apparent that all pruning methods are more effective in the gcd case than
with weather. This is logical since this case can be thought of as zero wind, whose Super-
Optimal Wind underestimation is perfect – thus tightening the bounds on both fuel and
time underestimation. Consequently, the influence of including the overflight fees in the
estimation become more apparent. Therefore, it is also not surprising that fuel time ofc
pruning in the gcd case is the most effective of all methods, since it deals with the tightest
lower and upper bounds possible.

6 Conclusion

We have investigated the Flight Planning Problem in more detail than what was covered
before. To speed up the query, we have developed and presented three different pruning
methods for an a priori search space reduction. In particular, we presented a way to
incorporate crossing costs in the underestimation, thus tightening the lower bounds on the
optimal costs for the Flight Planning Problem.

We showed both theoretically and computationally that each of the methods is effective.
Clearly, including crossing costs in the underestimation yields a noticeable reduction of both
the search space and the ensuing query time. While all pruning methods bear similarities
to A*, to the best of our knowledge, there is no known underestimator for this particular
problem. This is partly due to the fact that A* requires that one define a potential function
at each node. Contrastingly, we use a two-stage pruning process to first eliminate boundary
nodes and then deactivate inner nodes.

The added benefit of a priori search space reduction is that it can be used with non-heap-
based algorithms, such as topological sorting, too.
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