
Takustraße 7
D-14195 Berlin-Dahlem

Germany
Konrad-Zuse-Zentrum
für Informationstechnik Berlin

BENJAMIN HILLER SVEN O. KRUMKE JÖRG RAMBAU

Reoptimization Gaps versus
Model Errors

in Online-Dispatching of Service Units
for ADAC

ZIB-Report 04-17 (April 2004)



REOPTIMIZATION GAPS VERSUS MODEL ERRORS IN
ONLINE-DISPATCHING OF SERVICE UNITS FOR ADAC

BENJAMIN HILLER, SVEN O. KRUMKE, AND JÖRG RAMBAU

Abstract. Under high load, the automated dispatching of service vehicles for
the German Automobile Association (ADAC) must reoptimize a dispatch for
100–150 vehicles and 400 requests in about ten seconds to near optimality. In
the presence of service contractors, this can be achieved by the column gener-
ation algorithm ZIBDIP. In metropolitan areas, however, service contractors
cannot be dispatched automatically because they may decline. The problem:
a model without contractors yields larger optimality gaps within ten seconds.
One way-out are simplified reoptimization models. These compute a short-
term dispatch containing only some of the requests: unknown future requests
will influence future service anyway. The simpler the models the better the
gaps, but also the larger the model error. What is more significant: reop-
timization gap or reoptimization model error? We answer this question in
simulations on real-world ADAC data: only the new model ZIBDIPdummy can
keep up with ZIBDIP.

1. Issues and Motivation

Currently, the German Automobile Association (ADAC) evaluates an automated
dispatching system for service vehicles (units) and service contractors (conts) on
the basis of exact cost-reoptimization. This means that a current dispatch is main-
tained, which contains all known yet unserved requests and which is near optimal
on the basis of the current data; whenever a unit becomes idle its next request is
read from the current dispatch; at each event (new request, finished service, etc.)
the dispatch is updated by a reoptimization run.

A feasible current dispatch for all known requests and available service vehicles
is a partition of the requests into tours for units and conts such that each request
is in exactly one tour and each unit drives exactly one tour (maybe directly to its
home position) so that the cost function is minimized. Cost contributions come
from driving cost for units, fixed service costs per requests for conts, and a strictly
convex lateness costs for violation of soft time windows at each request (currently
quadratic). The latter cost structure is chosen so as to avoid large individual waiting
times for customers.

It is not a-priori clear that such a rigorous reoptimization yields the best, or
even a good, long-term cost (this is the online issue of the dispatching problem).
Indeed, at times in the literature it is claimed that exact reoptimization (i.e., with
small optimality gap) does not pay in practice because of the unknown future
requests [1, p. 5]. In the case of this particular application, however, the results of
exact reoptimization are satisfying [2], in concordance with [3, Sec. 8.4].

Although the reoptimization problem, which is modeled as a set partitioning
problem for tours, has an astronomical number of variables, it can be solved by a dy-
namic column generation procedure. An effective method to obtain provably good

Key words and phrases. vehicle dispatching, real-time, integer linear programming, dynamic
column generation, dummy contractor, shadow price model.

Supported by the DFG research center ”Mathematics for key technologies” (FZT 86) in
Berlin.”.

1



2 BENJAMIN HILLER, SVEN O. KRUMKE, AND JÖRG RAMBAU

solutions in ten seconds (this is the real-time aspect of the dispatching problem) is
dynamic pricing control, which is the main feature of our ZIBDIP algorithm [4].

As it turns out, the fixed cost for service by conts bound the dual values of
requests. Thus, conts substantially contribute to the success of the branch-and-
bound method underlying the dynamic pricing control in ZIBDIP. In metropolitan
areas, however, there is a problem with the automated dispatching of conts: the
cont may decline to serve suggested requests, in which case this request has to be
reentered into the system. Since the majority of the conts is not connected to the
computer network of ADAC each assignment of a request to a contractor involves
a manual phone call. Because conts delined too often, the dispatching process at
ADAC was slowed down and, as a consequence, the ADAC decided to remove conts
from the model.

In simulations on ADAC production data (three days in December 2002 with
high load) without conts, we encountered a significant reoptimization gap. For
2002/12/13, e.g., Fig. 1 shows the gap of the reoptimization result to the respective
lower bound coming from the optimal solution of the LP relaxation (this lower
bound was computed a-posteriori for each reoptimization). The reoptimization
still works well in most cases, but under high load the solutions – delivered after
ten seconds – exhibit optimality gaps around 3% on average but up to 15% in peak
load situations.

0

3

6

9

12

15

08:00 10:00 12:00 14:00 16:00 18:00
0
0.5
1
1.5
2
2.5
3
3.5

g
a
p

in
%

lo
a
d

ra
ti

o
LP gap

load ratio

Figure 1. Integrality gap over time of ZIBDIP (the load ratio is
the number of requests per unit in a reoptimization problem)

One way to overcome this problem is to consider simplified reoptimization models
that stem from the following considerations: In principle, for each unit we only have
to determine the next request to work on. The complete dispatch is computed only
to pick up future synergies by considering more than one request per unit. Synergies
that are implemented only very far in the future will be disturbed by new requests
anyway; therefore, an exact pre-calculation of the best decisions in, say, two hours
may not really be necessary; consequently, one can try to consider only a subset of
requests in a reoptimization step.

The issue of this experimental work is: should one stick to the complete model
and accept occasional substantial reoptimization gaps or is it better to simplify
the reoptimization model so as to eliminate the reoptimization gap? This question
is answered on the basis of simulation studies, performed on the aforementioned
ADAC production data: we first compare the original ZIBDIP reoptimization to
several methods to select subsets of requests for reoptimization. Then ZIBDIP
competes with a simple online heuristic for the ZIBDIP model in order to estimate
how even larger reoptimization gaps harm in the long run.

2. Main Results

We developed and evaluated the following strategies for request selection:



REOPTIMIZATION GAPS VERSUS MODEL ERRORS IN ONLINE-DISPATCHING 3

4-ZIBDIP: Select those requests that are among the four closest to some
unit. This can be generalized to k-ZIBDIP.

PTC (Prescribed Total Cover): Relax the set partitioning condition to
set packing, and require that a request set of cardinality twice the number
of units is covered by tours of units. This requires at least that many
requests in the system, which is the case under high load; under low load
this may be infeasible, so one has to switch accordingly.

ShadowPrice: Solve the LP relaxation of ZIBDIP. To find an integral so-
lution, relax the set partitioning condition to set packing and change the
cost of each tour to its reduced cost from the hopefully near optimal LP
solution. In this model, requests are assigned to units only if their LP
dual prices pay enough to weigh out the primal cost of their service. This
requires that the LP relaxation can be solved fast.

ZIBDIPdummy: Introduce a dummy contractor. This contractor can be as-
signed arbitrarily many requests at the same time, i.e., in reality, these
requests are unassigned for the moment. The arrival time of the dummy
contractor at any request is a fixed time, the dummy contractor delay. In
our case, 135 minutes were chosen. This implies that, in an optimal so-
lution, for any request in a tour of a unit, service will start after at most
135 minutes after reoptimization; otherwise, the request would have been
assigned to the dummy contractor.

We furthermore evaluated a reoptimization heuristic for the original model:
BestInsert: Reoptimization is done by taking the dispatch of the previous

reoptimization, removing all requests that have been served in the mean-
time, and inserting new requests at minimal additional cost w.r.t. to the
original ZIBDIP-model.

One should mention that in each reoptimization with either model, the solutions
of the previous reoptimization are reused as start solutions – a simple but essen-
tial technique to stabilize the dispatching process in case of occasional suboptimal
reoptimization.

instance requests units requests per unit
2002/12/07 2123 125 16.98
2002/12/13 2537 146 17.38
2002/12/14 1731 131 13.21

Table 1. Sizes of high load instances used for simulation

The simulation data stems from three days of production at ADAC in December
2002; instance sizes are given in table 1. Depending on the instance, between 1700
and 2100 reoptimization runs where triggered. The software ran on a standard
Linux PC, 2.4GHz Pentium 4 CPU, 4GB RAM, distribution Suse 9.0, kernel 2.4.21-
202-smp, LP solver CPLEX 8.0, compiled with gcc 3.3.1. Each reoptimization run
was interrupted after 10s run-time.

The results: only ZIBDIPdummy is competitive against ZIBDIP. In two out of
three instances it has even slightly lower long-term cost than ZIBDIP, though by
a small margin. Yet, the answer to our question is that the model error of most of
our high-load models is worse than the computational error that ZIBDIP produces
(Fig. 2). Therefore, such model reductions have to be treated with great care. In
our case, ZIBDIPdummy seems to deliver the overall best solution. One needs to
be careful, though: a substantially smaller contractor delay of 45 minutes would
remove the reoptimization gap completely, it, however, would at the same time



4 BENJAMIN HILLER, SVEN O. KRUMKE, AND JÖRG RAMBAU

90

100

110

120

130

140

08:00 10:00 12:00 14:00 16:00 18:00 20:00

co
st

in
%

re
la

ti
v
e

to
Z
IB

D
IP

(a) 2002/12/07

90

100

110

120

130

08:00 10:00 12:00 14:00 16:00 18:00

co
st

in
%

re
la

ti
v
e

to
Z
IB

D
IP

(b) 2002/12/13

90

100

110

120

130

140

08:00 10:00 12:00 14:00 16:00 18:00 20:00

co
st

in
%

re
la

ti
v
e

to
Z
IB

D
IP ZIBDIP

ShadowPrice
4-ZIBDIP

PTC

ZIBDIPdummy

(c) 2002/12/14

Figure 2. ZIBDIP vs. simplified models

100

110

120

130

140

150

160

170

08:00 10:00 12:00 14:00 16:00 18:00 20:00

co
st

in
%

re
la

ti
v
e

to
Z
IB

D
IP

(a) 2002/12/07

100
110
120
130
140
150
160
170
180

08:00 10:00 12:00 14:00 16:00 18:00

co
st

in
%

re
la

ti
v
e

to
Z
IB

D
IP

(b) 2002/12/13

90
100
110
120
130
140
150
160
170
180

08:00 10:00 12:00 14:00 16:00 18:00 20:00

co
st

in
%

re
la

ti
v
e

to
Z
IB

D
IP ZIBDIP

BestInsert

(c) 2002/12/14

Figure 3. ZIBDIP vs. BestInsert

produce unacceptable long-term costs because too many requests stay unassigned
for too long.

That larger computational errors in the reoptimization can nevertheless spoil
the long-term cost more significantly than the model errors above, is shown by the
bad performance of the simple BestInsert heuristic for the original reoptimization
model of ZIBDIP (Fig. 3). Thus, also in the dynamic setting it pays off to optimize
as exactly as possible.



REOPTIMIZATION GAPS VERSUS MODEL ERRORS IN ONLINE-DISPATCHING 5

3. Significance

The production software for automated dispatching of ADAC service vehicles is
produced by Intergraph Public Saftety (IPS), based on the ZIBDIP algorithm. In
the view of the results presented in this work, ADAC has filed a change request for
the production software: ZIBDIPdummy is now the standard reoptimization model
because it has proven to be more robust against sudden load increase. The key
learning is that rigorous reoptimization on the basis of mathematical programming
– though myopic w.r.t. unknown future requests – yields the best results in this
particular application.

References

[1] K. Q. Zhu, K.-L. Ong, A reactive method for real time dynamic vehicle routing problem, in:
Proceedings of the 12th ICTAI, 2000.

[2] M. Grötschel, S. O. Krumke, J. Rambau, L. M. Torres, Online-dispatching of automobile

service units, in: U. Leopold-Wildburger, F. Rendl, G. Wäscher (Eds.), Operations Research
Proceedings, Springer, 2002, pp. 168–173.
URL http://www.zib.de/PaperWeb/abstracts/ZR-02-44/

[3] D. Bertsimas, D. Simchi-Levi, A new generation of vehicle routing research: robust algorithms,
addressing uncertainty, Operations Research 44.

[4] S. O. Krumke, J. Rambau, L. M. Torres, Realtime-dispatching of guided and unguided auto-
mobile service units with soft time windows, in: R. H. Möhring, R. Raman (Eds.), Algorithms
– ESA 2002, 10th Annual European Symposium, Rome, Italy, September 17–21, 2002, Pro-
ceedings, Vol. 2461 of Lecture Notes in Computer Science, Springer, 2002.
URL http://www.zib.de/PaperWeb/abstracts/ZR-01-22

E-mail address: krumke@mathematik.uni-kl.de

E-mail address: {hiller,rambau}@zib.de
{Benjamin Hiller, Jörg Rambau}, Department Optimization, Zuse-Institute Berlin,

Germany

Sven O. Krumke, Department of Mathematics, University of Kaiserslautern, Ger-

many


