;’A’A.

LA
A XA

A

”.
S

A’A‘;

TakustraBe 7
D-14195 Berlin-Dahlem
Germany

Konrad-Zuse-Zentrum
fur Informationstechnik Berlin

Y UIJI SHINANO, TOBIAS ACHTERBERG, TIMO BERTHOLD, STEFAN HEINZ,
THOSTEN KOCH, MICHAEL WINKLER

Solving Previously Unsolved MIP Instances
with ParaSCIP on Supercomputers
by using up to 80,000 Cores

*Supported by the DFG Research Center MATHEON Mathematics for key technologies in Berlin

Z1B-Report 20-16 (May 2020)



Herausgegeben vom

Konrad-Zuse-Zentrum fiur Informationstechnik Berlin
Takustrafie 7

D-14195 Berlin-Dahlem

Telefon: 030-84185-0
Telefax: 030-84185-125

e-mail: bibliothek®@zib.de
URL: http://www.zib.de

ZIB-Report (Print) ISSN 1438-0064
ZIB-Report (Internet) ISSN 2192-7782


bibliothek@zib.de
http://www.zib.de

Abstract

Mixed-integer programming (MIP) problem is arguably among the hardest classes
of optimization problems. This paper describes how we solved 21 previously unsolved
MIP instances from the MIPLIB benchmark sets. To achieve these results we used
an enhanced version of ParaSCIP, setting a new record for the largest scale MIP
computation: up to 80,000 cores in parallel on the Titan supercomputer. In this paper,
we describe the basic parallelization mechanism of ParaSCIP, improvements of the
dynamic load balancing and novel techniques to exploit the power of parallelization
for MIP solving. We give a detailed overview of computing times and statistics for
solving open MIPLIB instances.
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1 Introduction

This paper deals with solving Mixed Integer Programming (MIP) problems in parallel.
Throughout this paper we assume, without loss of generality, that a MIP is given in the
following general form:
min{c'z : Av < b, )
| <z <wu,z; €Z, forall j €I}, (1)
with matrix A € R™*", vectors b € R™ and ¢,l,u € R", and a subset I C {1,...,n}.
MIP is a very important problem class. Many optimization problems arising in practice
can be modeled as a MIP, see, e.g., [1]. Well-established standards for data formats have
made it possible to collect a variety of real-world problem instances and make them publicly
available in problem libraries, such as MIPLIB. The first version of MIPLIB was created in
1992 [2]. Its latest release is MIPLIB2017[3]. These libraries are key to the evolution of the
MIP field of research because new ideas and algorithms can be evaluated against data sets
arising from real-world problems. Moreover, researchers can directly compare their results
to previous studies, and unsolved models from these libraries provide research challenges
to advance the field. MIPLIB has always motivated researchers to compete for solving its
challenge instances by utilizing the latest and fastest algorithms and hardware or, ideally, a
combination of both.



Supercomputers with more than 10,000 cores first appeared on the Top500 supercomputer
list! in November 2004. After June 2018, this list has contained no entry that has less than
10,000 cores. When utilizing such a huge amount of computing resources, we expect to
obtain valuable and tangible results from the computations on them. This leads to the aim
of this research: to solve previously intractable MIP instances on supercomputers.

State-of-the-art MIP solvers are based on the branch-and-cut paradigm, which is a
mathematically supercharged mixture of a branch-and-bound tree search combined with
a cutting plane approach, employing a large number of sophisticated algorithms to keep
the enumeration effort small. This includes a large number of heuristic methods to devise
primal feasible solutions, and many cutting plane separation algorithms to increase the
lower bound value obtained by the Linear Programming (LP) relaxation, see, e.g., [1].

Tree search algorithms are generally considered easy to parallelize. However, to the
best of our knowledge, there have been only two implementations of a large scale par-
allelized MIP solver that succeeded in solving open benchmarking instances. One is
GAMS/CPLEX/Condor by Bussieck et al. [4] who solved three instances from MIPLIB2003
by a GRID computing approach. The other is ParaSCIP [5], extensions of which are presented
in this paper. Both solvers use a state-of-the-art MIP solver as a black box to exploit
the latest MIP solving technology; the tree search based solving process is parallelized
externally. For a recent survey about parallel MIP solving see [6].

In this paper, we first briefly introduce ParaSCIP and explain its parallelization features.
Next, we describe new techniques that we developed recently to tackle some of the hardest
MIPLIB challenge instances. Finally, we show computational results for solving open instances
over a period of seven years by using up to 80,000 cores.

2 ParaSCIP — A Distributed Memory MIP Solver

ParaSCIP has been developed by using the Ubiquity Generator (UG) framework [7, 8]. Figure 1
shows the design structure of UG. UG is written in C++. It consists of a set of base classes
to instantiate parallel branch-and-bound based solvers. The solver and the parallelization
library used for communications are abstract classes. The branch-and-bound based solver
is treated as a black box, i.e., UG can be used with different state-of-the-art MIP solvers.
As a consequence, improvements of the basic solver technology can immediately be utilized
in the parallel case. Also, the parallelization library can be exchanged, which makes the
parallel solver more portable. ParaSCIP is an instantiated parallel solver where SCIP is used
as the black box MIP solver and MPI is used as the parallelization library.

As shown in Figure 2, two types of processes exist when running ParaSCIP on a super-
computer. There is a single LOADCOORDINATOR (abbreviated to LC throughout of this
paper), which makes all decisions concerning the dynamic load balancing and distributes
subproblems of MIP instances to be solved (so-called sub-MIPs). All other processes are
SOLVERs that solve the distributed sub-MIPs.

Thttp://www.top500.org



In general, a parallel branch-and-bound algorithm consists of three phases [6]. The
ramp-up phase is the phase that lasts until all solvers have become busy. A natural way to
distribute sub-MIPs to all solvers in the ParaSCIP configuration is the following. SOLVERs
that are already solving a sub-MIP transfer every second child node back to the LC. The
LC maintains a node pool from which it assigns nodes to idle SOLVERs. If no idle SOLVER
exists, the LC keeps collecting nodes from SOLVERs until it has p “heavy” (promising to
have a large subtree underneath see 3.1.1 for a definition) unassigned nodes in its node
pool. Here, p is a run-time parameter, which is set to a value between 10 and 2,000 in our
experiments. As soon as the LC’s node pool has accumulated p “heavy” nodes, it sends a
message to all SOLVERs to stop sending nodes. This is called normal ramp-up.

The second phase is the primary phase, during which the algorithm operates in steady
state. This state is followed by the ramp-down phase, at which there is not enough work
left to keep all SOLVERs busy and during which termination procedures are executed. In
all these phases, the key is how to realize the dynamic load balancing. A supervisor-worker
coordination mechanism is used to realize the dynamic load balancing in ParaSCIP, which is
presented in the next section. A detailed description of how ParaSCIP works can be found
in [5] and [7].

3 The key techniques

For tackling unsolved MIP instances, one should not rely on parallelization alone, even
if it is on a supercomputer level. Since MIP is an NP-hard problem, a linear speed-up
cannot help to improve solvability. The success of ParaSCIP for solving previously unsolvable
instances relies on two factors: One is that the supervisor-worker coordination mechanism
has been tuned to work up to 80,000 SOLVERs keeping search direction properly. It can
last until the end of computation with an application oriented light weight check-pointing
and restarting mechanism, even though all jobs on supercomputers always have a time
limit. The coordination mechanism is described in this section. More importantly, the
other factor is that a parallel solver instantiated by using UG causes algorithmic changes to
that of the base solver, that is, ParaSCIP works algorithmically differently from SCIP. As
prime examples, layered presolving and racing ramp-up are presented in this section.

3.1 Supervisor-Worker coordination mechanism

ParaSCIP realizes a parallelization of MIP solvers for a distributed memory computing
environment without a centralized global search tree data structure. An idea of Supervisor-
Worker is that the Supervisor functions only to coordinate workload, but does not actually
store the data associated with the whole search tree. In ParaSCIP, LC represents the
Supervisor and the SOLVERs represent the Workers. Each node transferred through the
system—called a PARANODE—acts as the root of a subtree. The information sent to a
PARANODE only consists of variable bound changes. The SOLVER that receives a new
branch-and-bound node instantiates the corresponding sub-MIP using the instance that
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was distributed in the initialization step (see also 3.2), and the received bound changes.
Therefore, a PARANODE is considered as a representation of a sub-MIP in ParaSCIP. The
terminal nodes of the search tree in the SOLVERs are collected on demand and a set
PARANODE in the LC works as a buffer to ensure sub-MIPs are available to idle SOLVERs
as needed. Algorithms 1 and 2 show a parallel algorithm with a simplified Supervisor-Worker
coordination mechanism.

In UG, the load balancing is accomplished mainly by toggling the collection mode flag
in the SOLVER. Turning collecting mode on results in additional “heavy” sub-MIPs being
sent to the LC as PARANODEs, which can then be distributed to SOLVERs. Naturally,
the method of selecting which SOLVER to collect from is crucial to the effectiveness of
the approach. In the following subsections, detailed dynamic load balancing features
implemented in ParaSCIP are presented.



Algorithm 1 Supervisor

Input: Single MIP solver, set of N processors i € S = {1,..., N} and an MIP instance to be solved
Output: An optimal solution
Spawn N Workers with the MIP solver on processors 1 to N
collectMode ¢« false
x* < NULL
I+ N\{1}
A+ {1}
Q<0
R < {(1,0)} // Subproblems currently being processed, 0 is the index of the root problem
Send the root problem to processor 1
while Q #0 and R# 0 do
(i, tag) + Wait for message // Returns processor identifier and message tag
if tag = solutionFound then
Receive solution & from processor ¢
if 2* = NULL or ¢' 2 < ¢"z* then
¥ 2
end if
else if tag = subproblem then
Receive a subproblem indexed by k from processor ¢
Q < QU {k}
else if tag = terminated then
R+ R\ {(i,4)} // j is the index of the terminated subproblem
A A\{i}, T «+ TU{i}
else if tag = status then
if collectMode = true then
if there are enough heavy subproblems in ) then
// heavy subproblem is a subproblem which is expected to generate a large subtree
Send message with tag = stopCollecting to processors in collecting mode.
collectMode « false
end if
else
// collectMode = false
if there are not enough heavy subproblems in ) then
Select processors which have heavy subproblems
Send message with tag = startCollecting to the selected processors
collectMode « true
end if
end if
end if
while I #( and Q #0 do
tel, I+ I\{i}, A« Au{i}
subproblem j € Q, @ < Q\{j}, R+ RU{(,j)}
Send subproblem j and x* to processor @
end while
end while
Vi € S : Send message with tag = termination to processor i
Output z*




Algorithm 2 Worker

Input: An MIP solver and an original MIP instance to be solved
collectMode «+ false
terminate + false
while terminate = false do
(i, tag) < Wait for message from Supervisor // Returns Supervisor identifier 0 and message tag
if tag = subproblem then
Receive subproblem and solution from Supervisor
Solve the subproblem, periodically communicating with supervisor as follows

- Send message with tag solutionFound anytime a new solution is discovered.

- Periodically send message with tag status to report current lower bound for this subproblem.

- When messages with tag startCollecting or stopCollecting are received, toggle collectMode.
- When collectMode = true, periodically send message with tag subproblem containing best

candidate subproblem.

Send a message with tag = terminated
else if tag = termination then
terminate < true
end if
end while

3.1.1 Trigger of the toggling collecting mode

The LC aims to keep at least p “heavy” nodes in the node pool ) in Algorithm 1. We call
a node heavy if the lower bound value of its subtree (NODEBOUND) is sufficiently close to
the lower bound value of the overall search tree (GLOBALBOUND). This is evaluated by

the expression
NODEBOUND — GLOBALBOUND

< T ) 5
ma’x{|GLOBALBOUND|7 1'0} HRESHOLD ( )

If a SOLVER receives the message to switch into the collecting mode, it changes the
search strategy to “best bound order” (see [9]). Similar to normal ramp-up, the SOLVER
alternates between solving nodes and transferring them to the LC.

SOLVERs switch to collecting mode in ascending order of the minimum lower bound of
their open nodes. The collecting mode is stopped as soon as the number of heavy nodes in
the pool is larger than m, - p (1.5 is used for m,, usually). When the collecting mode has
been stopped, the search strategy of the SOLVER is changed back to its original one.

3.1.2 Dynamic tuning of parameters and bulk sending of ParaNodes

The frequency in which a SOLVER sends PARANODEs to the LLC depends not only on the
computing environment but also on the instance to be solved. The processing of a node
involves the execution of different algorithms such as node preprocessing or LP solving
that may have significant runtimes. At some dedicated nodes, expensive primal heuristics
or cutting plane separation loops might be run. The time spent for an individual node
can range between a fraction of a second and several minutes, even within the same MIP



instance. This time is difficult to estimate in advance. Therefore, the number of SOLVERS
that can be in collecting mode at a certain point needs to be adjusted dynamically to
reduce the idle time ratio.

Sending PARANODEs, i.e., sub-MIPs, from a subtree to other SOLVERs means that
parts of the subtree will be explored more aggressively by using the other SOLVERs. It is
beneficial to keep the number of SOLVERSs in collecting mode small at any point in time,
since this will focus the tree exploration on the hard part of the search tree, compare [4].
On the other hand, it is necessary that enough SOLVERs are in collecting mode in order to
collect enough PARANODESs to keep all SOLVERs busy. Therefore, the number of SOLVERs
that can be in collecting mode at a point of time is restricted to one at the beginning of
the computation and is increased by one whenever the node pool in the LC has stayed
empty for a period of time as specified by a run-time parameter (the default setting is
ten seconds). The value p is also changed dynamically. It is not only increased, but also
decreased depending on how fast the LC switches into collecting mode. In the default
setting, if the interval time between collecting modes is less than ten seconds, the p value
is doubled. This helps to keep the number of collecting mode SOLVERs small without
increasing the idle times.

The synchronization protocol between a SOLVER and the LC renders sending individual
PARANODEs comparatively slow. To avoid this, we implemented a fast bulk sending
mechanism. The message that requests a SOLVER to switch into collecting mode additionally
includes the number of PARANODEs expected to be sent from the SOLVER. That is, when
the LC switches into collecting mode it determines how many PARANODEs are to be
collected from which SOLVERs by using information from the SOLVER’s status messages. If
a SOLVER has sufficiently many open nodes, it sends exactly the number of PARANODEs
specified by the LC without synchronization in between. If a SOLVER does not have enough
open nodes, it sends as many as possible by bulk. Afterwards, it switches to the normal
PARANODE sending mechanism.

3.1.3 Special treatment of the ramp-down

The ramp-down phase is reached at the end of the computation when it becomes difficult to
keep all SOLVERs busy. Typically, at the end of the computation only a few SOLVERs have
a significant search tree remaining. At the same time, most of the PARANODEs are solved
extremely fast and the SOLVERs send their completion messages to the LC. In the worst
case, this can lead to a congestion in the communication network and it may even prevent
the LC from collecting PARANODEs. When the L.C recognizes such a strongly imbalanced
situation, it changes the PARANODE sending mechanism such that

1. it solely collects PARANODEs without redistributing them until a sufficient number
had been collected,

2. afterwards, the collected PARANODESs are redistributed to idle SOLVERs.

This change is triggered if for a period of time as specified by a run-time parameter (10
seconds is specified in our experiments) less than 90% of the solvers are active and the
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number of open nodes within the SOLVERs exceeds the number of SOLVERs by more than
a factor of 100.

3.1.4 Restarting the collecting mode

ParaSCIP can control how frequently the SOLVER statuses are updated by using the notifica-
tion interval time parameter. This parameter indicates the interval of time between status
messages from a SOLVER. Each message contains very little data, but all SOLVERs send
these messages periodically. When supercomputers with huge amounts of parallel cores are
used, this communication eventually becomes a bottleneck and a longer updating interval
is required. As a consequence, the LC schedule is based on slightly outdated information.
If this leads to the node pool running empty, the collecting mode is restarted immediately.
When the number of collecting mode SOLVERs reaches its limit (normally this situation
occurs in the ramp-down phase), restarting the collecting mode is the only way to accelerate
the collection of PARANODEs. In ramp-down, it occurs frequently that the collecting mode
is restarted several times in a row.

3.1.5 Branch node selection in the collecting mode Solver

In SCIP it is possible to customize the node selection strategy by adding a node selector
plugin. We implemented a node selector that is designed to select nodes that are expected
to have a large search tree underneath. This special node selector is used while a SOLVER
is in collecting mode. In the node selector for the collecting mode, a node is selected by the
best (i.e., lowest) lower bound as aforementioned, with a lower number of variable bound
changes as a tie breaker. The number of bound changes is a rough estimate of the volume
of the feasible region for a sub-MIP. The PARANODE with the largest feasible region is
transferred.

3.1.6 Checkpointing and restarting

ParaSCIP implements a checkpointing mechanism to write out an intermediate search state
in order to restart the parallel search procedure from that state. Therefore, ParaSCIP
saves only primitive nodes, which are nodes that have no ancestor nodes in the LC. This
strategy requires much less effort for the I/O system than to save all open nodes to a
disk, in particular in large scale parallel computing environments, but potentially creates a
computational overhead after the restart. However, the effort to regenerate the search tree
is often outweighed by the benefits of re-applying a global presolving procedure during the
restart (see [10]).

A neat feature of our checkpointing mechanism is that the number of nodes in the
checkpoint file is bounded by

max{# of open nodes after racing stage,
# of SOLVERs + p + a}.



Here, « is the number of nodes sent from the SOLVERs after the LC sent a message to stop
sending nodes to all SOLVERs owing to buffer messages.

The restart involves ParaSCIP reading the nodes saved in the checkpoint file and restoring
them into the node pool of the LC. The LC subsequently distributes these nodes to the
SOLVERs in an order determined by their lower bounds.

3.2 Layered presolving

In current state-of-the-art MIP solvers, the instance being solved is not the original one,
but a reformulated presolved one and the presolving technique has a big impact on solving
it, see, e.g., [11] or [9] for an overview on MIP presolving techniques. Since in ParaSCIP,
eachPARANODE is presolved from scratch, it holds that more SOLVERs being employed will
lead to more frequent in-tree presolving.

3.2.1 Initial presolving in LC

At the initialization, the LC reads the instance data of the MIP to solve. We refer to
the resulting instance as the original instance. This instance is presolved directly inside
the LC, We call the resulting instance the presolved instance. The presolved instance is
broadcasted to all available SOLVER processes only once, and is embedded into the (local)
SCIP environment of each SOLVER. During the solving process, PARANODEs, which only
contain differences between a sub-MIP and the presolved instance, are communicated. This
means that a feasible solution found by a SOLVER needs to be transformed back to the
original instance. This is done by using the SCIP environment in the LC.

The number of variables and constraints reduced in the presolving depends on the SCIP
version used. The Online supplement of [7] shows original instances and the presolved ones
generated by SCIP version 2.1.1 for all instances from the MIPLIB 2010 benchmark set.

3.2.2 Recursive application of presolving

ParaSCIP applies presolving when a newly received sub-MIP is started to be solved. When
a PARANODE is retrieved, that is, a set of bound changes for variables is applied to the
SCIP environment in a SOLVER, the sub-MIP will be presolved from scratch. This recursive
presolving does not occur in SCIP. This is one of several examples how parallelization scale
can introduce more algorithmic changes to SCIP. In current state-of-the-art MIP solvers,
cuts are applied more aggressively at the root node after applying presolving.

The effectiveness of recursive application of presolving depends on the instances to be
solved. Small scale, intensive computational experiments were conducted for the MIPLIB
2010 benchmark instance set by using FiberSCIP, which is a shared memory version of
ParaSCIP, in [7]. The paper shows that the number of nodes solved decreases when adding
more SOLVERs on average. This is not the case, in general, for naive implementations of
parallel branch-and-bound. The instances for which we could expect recursive presolving to
work well are the ones that we consider in the computational section of this paper.
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3.3 Racing ramp-up

In this mechanism, after initialization, the LC sends the root branch-and-bound node to
all SOLVERs simultaneously and each SOLVER starts solving the root node of the presolved
instance immediately. In order to generate different search trees, even though they work
on the same problem, each SOLVER uses different parameter settings and permutations of
variables and constraints. As shown in [12], the latter can have a considerable impact on the
performance of a solver due to imperfect tie breaking. Due to these variations, we expect
that the SOLVERs will generate vastly different search trees. After a specified amount of
time, one SOLVER is chosen as the “winner” of this racing stage. The winning criterion
is a combination of the lower bound and the number of open nodes of the sub-MIP. All
open nodes of the “winner” are then collected by the LC and a termination message is
sent to all other SOLVERs. The search trees of the other SOLVERs are discarded. Only the
feasible solutions found during their solving process are kept. The collected nodes are then
redistributed to the now idle SOLVERs. Once a “winner” is selected that provides less nodes
than the number of available SOLVERS, ParaSCIP performs normal ramp-up.

4 Node merging and deep probing

This section introduces novel techniques for parallel MIP search that helped us tackle
unsolved instances and improve the solving time on hard instances.

4.1 Merging ParaNodes at restart

The choice of the branching variables has a big impact on MIP search, see [14]. This holds
in particular for branchings that are performed early in the branch-and-bound process.
In MIP, branching decisions are typically based on statistical information derived from
previous branchings, so-called pseudo-costs. These pseudo-cost statistics are often weak at
the beginning of the search. Therefore, it seems beneficial to try to correct “bad” branching
decisions later on. On supercomputers, usually a hard time limit for every computation
is imposed and we often need to restart the whole solution process multiple times from a
checkpoint file when solving very challenging MIP instances. The restart is a natural point
to re-organize the branch-and-bound tree by using the branching statistics stored in the
checkpoint file. In this subsection, we present an algorithm to merge PARANODEs (from a
checkpoint file) at a restart to re-arrange the search tree.
Let

sub-MIP; :=min{c'z : Az < b,
I'<z<u',z;€Zforall jel}

be the sub-MIP with local bounds [* and u* corresponding to PARANODE 4. Let O be the
set of such sub-MIPs that corresponds to the set of open PARANODEs, and let M C O be
some subset of these nodes. For a given j € I andv € Zlet SY(M) := {i € M : I} = u} = v}
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be the set of sub-MIPs in M that share the same fixing of integer variable z; to value v.
For a given set of sub-MIPs M C M we define a merged sub-MIP as:

sub-MIP ; :=min{c'z : Az < b,
M <z <uM gz €Zforall j eI}

with bounds lj-‘;f = minieM{lé} and ué‘Z = maxiej\;[{uj-} for all j € {1,...,n}. Merging
PARANODES is performed by Algorithm 3 and Algorithm 4.

Algorithm 3 Solve all open sub-MIPs with merging
Input: O
Output: Solve all sub-MIPs in O
M+ O
C <+ Algorithm 4(M)
T+ C
while T # () do
// This loop can be performed in parallel
Select P, € T
T+ T\{P}
if P, is a merged-node then
/] P, =P,
// P; := original sub-MIP of P;
Perform root node procedure for PZ
if lower bound of P; <
(lower bound of P;) - (1 —4) then
// ¢ is a parameter: O(current default)
Recover a set of sub-MIPs M from P
M « M\{P;}
C < Algorithm 4(M)
T+ TU{P}tUC
else
Keep solving P;(*)
end if
else // P := P
Solve P;(*)
end if
end while

For the merging of nodes, similar considerations hold as for checkpointing by storing
primitive nodes. It potentially loses information because it relaxes already fixed variables.
Also, merging is likely to worsen the lower bound of the corresponding sub-MIPs. However,
since a merged PARANODE will be solved like a stand-alone problem, namely from scratch
by use of the full power of presolving and cutting planes, the lower bound can even improve.
This is taken into account during the merging procedure: merging will not be performed if
the lower bound decreases too much, see Algorithm 3.

Our empirical observations indicate that the main advantage of merging is a more
balanced rearranged tree. Also, in our experiments we noticed that merged nodes increase
the chance of finding better solutions earlier in the search.

12



Algorithm 4 Generate merge-nodes candidate set

Input: M C O
Output: C // C is merge-nodes candidate set
C«+0
while M # () do
Select P € M s.t. P is a sub-MIP having the best lower bound in M
M« M
J—0
n<+0 5
while max; . 7 ez pesy i 157 (M)] > 2 do
// At least two nodes can be merged
(J,0) = arg max  [S}(M)]
JEINJ WEL,PESY (M)
M « S;’(J\Z/) // Note: P e M
J— Ju{}}
n<n+1
end while
if in7;ub-MIPP}| > 7 then

Hillj=u;
// 7 is a parameter: 0.9 (current default)

Create a merged sub-MIP P, from M
C«+Cu {PM}
M « M\ M

else
C+ Ccu{r}
M+ M\ {P}

end if

end while
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The current ParaSCIP version also provides a feature to perform the merge procedure
off-line (i.e., on a desktop machine in between two supercomputer runs) and to update
the checkpoint file accordingly. We are currently investigating under which conditions
automatically enforcing such restart might be overall beneficial to the solution process.

4.2 Deep probing

In SCIP, for each variable several statistics are stored that have been collected during the
solution process. In particular, branching statistics are used to select a branching variable.
The racing stage of racing ramp-up is a good opportunity to tentatively collect these
variable statistics for different possible search trees for the MIP instance at hand. This
means the LC collects all branching statistics not only from the racing winner, but also
from all SOLVERs that participated in racing. This information is then aggregated and used
to initialize the branching statistics of all SOLVERSs after racing, compare [15]. We refer to
this strategy as deep probing, since it resembles the ideas of probing and strong branching,
with the difference that instead of single nodes whole subtrees are explored tentatively.
We expect that initializing branching statistics will help to improve branching decisions
and decrease the likelihood of “bad” initial branchings. The effect of deep probing is not
yet fully investigated, but our experiments so far have been promising. In order to use
deep probing, all PARANODESs need to store (and communicate) this information. Hence,
the PARANODE data size increases. Therefore, this technique is best suited for medium
scale computing environments and for MIP instances that contain relatively few integer
variables.

5 Computational results

In this section, we report on open instances that were solved for the first time by using Para-
SCIP. Furthermore, we present the biggest and the longest MIP computation conducted so
far, and also summarize the status of open instances from MIPLIB 2003 /MIPLIB 2010/MIPLIB
2017 until the end of 2019.

5.1 Open instances solved by ParaSCIP

In 2009, six problem instances of MIPLIB2003 were still unsolved. In April 2010, ds and
stp3d were solved by ParaSCIP, see [5, 10]; the remaining four instances are still open (see
[13]). Figure 3 shows the status of MIPLIB 2003 until 2011. In the meantime, MIPLIB2010 [12]
has been published, the original paper listed 134 unsolved instances. In the following, we
present details of our ParaSCIP runs that solved 12 of these formerly unsolved instances to
proven optimality for the first time.

Table 1 gives a short overview on how the instances were solved. In the Table, “Rows’
and “Cols” show m and n of the matrix A in (1), and “Int”, “Bin” and “Con” show the
number of general integer, binary, and continuous variables, respectively. For each instance,

Y
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Table 1: Open instances from MIPLIB2010 solved by ParaSCIP

Date “Name [Rows‘ Cols‘ Int[ Bin[ Con[[SCIP‘CPLEX[Computer‘Runs‘ Cores[Time(h.)‘ Optimal value
March 2011 |{rmatr200-p20 |29406(29605 200|29405((2.0.1| 12.2 Alibaba 1 160 2 837
March 2011|[50v-10 233| 2013| 183| 1464| 366(/2.0.1| 12.2 |HLRN II 1 1024 5 3313.18
March 2011||probportfolio| 302 320 300 20((2.0.1] 12.2 |HLRNII 1 1024 12 16.7342

HLRN II 2 2048 36
March 2011||reblock354 19906 3540 3540 2.0.1| 12.2 |HLRNII 2 1024 24/|-39280521.2281657
HLRN II 3 2048 209
Jun 2012||dg012142 6310| 2080 640| 1440((2.1.1| 12.4 ISM 1 256 42 2300867
July 2012||dc1c 1649(10039 8380| 1659((2.1.1| 124 ISM 8 256 400 1767903.6501
ISM 7 512 700
August 2012||germany50-DBM| 2526/ 8189 88 8101(|2.1.1| 12.4 ISM 15 256 590 473840
March 2014||dolom1* 1803|11612 9720| 1892|/3.0.1| 12.5 |HLRN III 2 12288 16 6609253
January 2015||set3-10 3747| 4019 1424| 2595|(3.1.1| 12.6 |HLRN III 3 6144 33| 185179.043049708
HLRN III 2 3072 24
January 2015|(set3-20 3747] 4019 1424] 2595((3.1.1| 12.6 |HLRN III 1 6144 12| 159462.572721458
HLRN III 3 3072 36
November 2015||triptim3 14939|28440(6812|21621 713.1.2| 12.6 ISM2 1 864 10 13.5311
December 2015||rmine10 65274| 8439 8439 3.1.2| 12.6 |HLRN III 6 6144 54 -1913.88062
HLRN III 10 12288 112
HLRN III 4 18432 85
TITAN 1 80000 13
HLRN III 2 18432 48
HLRN III 1 36000 27
HLRN III 9 43200 356
HLRN III 11 43344 477
HLRN III 3|12000(HT) 611
HLRN III 1| 6168(HT) 4

Table 2: Open instances from MIPLIB2017 solved by ParaSCIP (72 Cores of ISM3 were

used)
Name Time to first Value of Time to Optimal
sol.(sec.) first sol. solve(sec.) value
fhnw-sq2 46,863 0 46,883 0
neos-4409277-trave 181,150 8 441,575 3
supportcase3 1,539 0 1,551 0
woodlands09 218,528 8 245,205 0
neos-5251015-ogosta 523,602 0.1058 525,353 0.1058
neos-3211096-shag - - 42,484 Infeasible
neos-3631363-vilnia - - 4,632 Infeasible
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Figure 3: Comparison of the number of solved MIPLIB 2003 instances at the beginning
of each year. ’Easy’ means, that the instance could be solved within one hour using a
commercial MIP-solver, ’hard’ stands for instances that were solved, but not in the previous
conditions.
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Figure 4: The number of open instances in MIPLIB2010 solved by ParaSCIP and the others
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the date of solving, the SCIP and the CPLEX version (the latter was used as an LP solver in
SCIP), the supercomputer(s) that we used, and the optimal solution value are presented.
The number of runs performed to prove optimality indicates if and how often we restarted
the computation from a checkpoint file, with 1 meaning that the initial run without restart
was already able to solve the problem instance. In the table, “Alibaba” is a PC cluster
with 40 PowerEdgeTM 2950 computers connected by Infiniband, each equipped with two
Quad-Core Xeon E5420 CPUs at 2.5 GHz and 16 GB RAM, “HLRN II” is an SGI Altix
ICE 8200EX (Xeon QC E5472 3.0 GHz/X5570 2.93 GHz), “HLRN III” is a Cray XC30
(Intel Xeon E5-2695v2 12C 2.400GHz, Aries interconnect), “ISM” is the ISM supercomputer
Fujitsu PRIMERGY RX200S5. “ISM2” is the updated ISM supercomputer SGI ICE X
(Intel Xeon E5-2697v2 2.7GHz 2CPU, 128GB) 400nodes Total: 207TFLOPS, 50TB. The
“(TH)” shown in the Cores column means that we used hyper-threading and the number of
processes on the computing nodes are double the number of cores. The computing time
shows an accumulated approximate computing time for the number of runs executed with
the same number of cores.

The results for solving the four instances rmatr200-p20, 50v-10, probportfolio and
reblock354 can already be found in the MIPLIB2010 paper [12]. For these experiments,
we initialized the search with the best known solutions. All other instances were solved
from scratch. All instances that are solved with more than one run are restarted from the
checkpoint file of its previous run, except doloml. For doloml, the second run was solved
without a checkpoint file, while we used the incumbent solution of the first run as an initial
solution.

Figure 4 shows the status of MIPLIB 2010 and the contribution of ParaSCIP for solving
open instances summarized until 2015. Right after MIPLIB 2010 was published, many open
instances were solved by mainly commercial MIP solvers. However, the number of open
instances solved by the commercial MIP solvers has constantly decreased year by year.
However, updating the HLRN II to HLRN III combining with algorithmic improvement of
SCIP, ParaSCIP has solved more instances from the previous years. It is not only its scale,
but the algorithmic improvement of SCIP combined with algorithmic changes caused by UG
would have had more impact to solve the instances.

Before publishing MIPLIB 2017 [3], we tried to solve open instances that did not have
any feasible solutions during the instances selection processes of MIPLIB 2017. Table 2
shows the ones solved by using ParaSCIP for the first time. The “ISM3” is the updated ISM
supercomputer HPE SGI 8600 (Intel Xeon Gold 6154 18 cores 3.0GHz 2CPU, 384GB) 376
nodes.

An important point is that ParaSCIP has kept solving open instances.

5.2 The biggest and the longest computation

The biggest and the longest computation used to solve a single instance is for solving the
open instance rmine10 by using the supercomputers HLRN III and Titan. 48 jobs were
executed with the previous checkpoint files and it took about 75 days and about 5660
years of CPU core time in total. For runs on HLRN III, the number of SOLVERs used is,
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in many cases, the number of cores minus 1. That is, one for the LC except runs using
hyper-threading, in which the number of SOLVERs used double the number of cores. For
the Titan run, we used one computing node dedicated to the LC process and the number
of SOLVERs was 79,984.

An intermediate result was presented in [16]. From the intermediate results, the idle
time ratio was extremely low in general (less than 2% in many cases) while the biggest one
was 27.5%. The latter was reached in a run that was aborted due to a hardware error and
terminated after 4.4 out of the planned 12 hours. In the primary phase, just an assigned
sub-MIP was consistently being solving, therefore, the idle time comes from the ramp-up
and ramp-down phases.

In Figures 5, 6 and 7, the results of all 48 runs are arranged by accumulating computing
times of the previous runs. Figure 5 shows how the upper and lower bounds evolved. At
the end of the first run, the relative gap was already 0.15%, still it was really hard to solve
the remaining part to optimality.

Figure 6 shows how the number of open nodes and the number of active SOLVERs
evolved together with the number of PARANODEs in the checkpoint file. All SOLVERs were
active most of the time. The number of PARANODESs in the checkpoint file was very stable
at around 10,000. Figure 7 shows how the limit of the collecting mode SOLVERs parameter
value is changed during the computation and the ratio in duration of collecting mode in the
computing time. Once the lower bound converges closer to optimality, we see more solvers
going into collecting mode for a longer duration, which indicates that the search is getting
closer to termination.

Altogether, the results show that ParaSCIP controlled search direction appropriately
with handling up to 79,984 SOLVERs with a single LC. This makes it a new record for the
largest number of cores involved in a parallel MIP search.

6 Discussion

It is difficult to evaluate the performance of parallel MIP solvers. This difficulty is sum-
marized in [6, 17]. A general way to compare MIP solvers is to use carefully designed
benchmark sets like MIPLIB. However, the performance of commercial MIP solvers has been
improving much faster than that of computer hardware. Although caching effects could
lead to have super-linear speed-ups, we can expect at most linear speed-up by using parallel
solvers in general. Therefore, even if a scalable parallel branch-and-bound framework is
used, it is hard to solve instances that cannot be solved by commercial solvers [18].

For parallel branch-and-bound, there are well-known anomalies in speed-ups [19]. This
is originated from slight algorithmic changes that lead to a different solution path, the tree
search may amplify those differences almost arbitrarily. In ParaSCIP case, UG explicitly
introduces more algorithmic changes by running more SOLVERs as described in this paper.
Therefore, evaluating performance by (strong) scalability would not be appropriate. An
alternative way to evaluate ParaSCIP performance as a MIP solver in small scale is presented
in [7]. It would be good to have some reasonable way to evaluate performance taking into
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account the algorithmic changes. The paper [17] is intended to initiate such a research.

7 Concluding remarks

In this paper we have shown that running ParaSCIP on some of the largest supercomputers
can be utilized to solve difficult, previously unsolved MIP instances. ParaSCIP can stably
handle over 40,000 cores, even in situations where a huge amount of branch-and-bound
nodes is constantly distributed. The biggest scale computational experiments conducted use
80,000 cores on Titan. This gives rise to the expectation that ParaSCIP will be capable of
handling even larger scale computing environments. Our first design approach of ParaSCIP
had a two-layered LC. However, the presented results do not indicate the need for a
two-layered LC. To utilize an even higher number of cores, it seems more beneficial to
design a combined system that additionally uses the internal shared-memory parallelization
of the MIP solver[20].

ParaSCIP can be used by researchers to conduct their own experiments, it is available in
source code and distributed as a part of the SCIP Optimization Suite?. As we described in
this paper, the key is to develop new algorithms that do not work in sequential SCIP, but
work in parallel. ParaSCIP is a good tool to test such an algorithm, for example, distributed
domain propagation [21]. One of the biggest advantages of SCIP is that it can be extended
to build a customized solver by adding user plugins. The latest distribution of ParaSCIP
has a feature to parallelize customized SCIP solvers by implementing a small interface [22].
A successful example of such an expansion is the parallel Steiner Tree Problems solver
introduced in [23]. It participated in the 11th DIMACS Implementation Challenge in
Collaboration with ICERM?. In this competition, ParaSCIP was the only solver that was
capable of running on distributed memory computing environments. In the release of the
SCIP Optimization Suite 5.0, the MISDP solver SCIP-SDP was also parallelized the same
way [24].

Given that major MIP software vendors such as IBM Cplex, Gurobi and FICO Xpress
have started to integrate distributed computing capabilities, the topic will become even more
significant in the future. Important questions are the balancing of ramp-down and ramp-up
phases and a proper handling of subproblems—subtrees and individual nodes—that show
very different runtime behaviors. We believe that the present paper gives some first clues
on how to address these challenges.
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